Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз (complex solution)
Tick mark Image
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі 729 бос мүшесін, ал q өрнегі 64 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=-\frac{9}{4}
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
16x^{2}-36x+81=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. 16x^{2}-36x+81 нәтижесін алу үшін, 64x^{3}+729 мәнін 4\left(x+\frac{9}{4}\right)=4x+9 мәніне бөліңіз. Нәтижесі 0 мәніне тең болатын теңдеуді шешіңіз.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 16 мәнін a мәніне, -36 мәнін b мәніне және 81 мәнін c мәніне ауыстырыңыз.
x=\frac{36±\sqrt{-3888}}{32}
Есептеңіз.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
± мәні плюс, ал ± мәні минус болған кездегі "16x^{2}-36x+81=0" теңдеуін шешіңіз.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Барлық табылған шешімдердің тізімі.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі 729 бос мүшесін, ал q өрнегі 64 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=-\frac{9}{4}
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
16x^{2}-36x+81=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. 16x^{2}-36x+81 нәтижесін алу үшін, 64x^{3}+729 мәнін 4\left(x+\frac{9}{4}\right)=4x+9 мәніне бөліңіз. Нәтижесі 0 мәніне тең болатын теңдеуді шешіңіз.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 16 мәнін a мәніне, -36 мәнін b мәніне және 81 мәнін c мәніне ауыстырыңыз.
x=\frac{36±\sqrt{-3888}}{32}
Есептеңіз.
x\in \emptyset
Теріс санның квадраттық түбірі нақты өрісте анықталмағандықтан, шешімдер жоқ.
x=-\frac{9}{4}
Барлық табылған шешімдердің тізімі.