x мәнін табыңыз
x=-5
x=0
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x\left(6x+30\right)=0
x ортақ көбейткішін жақшаның сыртына шығарыңыз.
x=0 x=-5
Теңдеулердің шешімін табу үшін, x=0 және 6x+30=0 теңдіктерін шешіңіз.
6x^{2}+30x=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-30±\sqrt{30^{2}}}{2\times 6}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 6 санын a мәніне, 30 санын b мәніне және 0 санын c мәніне ауыстырыңыз.
x=\frac{-30±30}{2\times 6}
30^{2} санының квадраттық түбірін шығарыңыз.
x=\frac{-30±30}{12}
2 санын 6 санына көбейтіңіз.
x=\frac{0}{12}
Енді ± плюс болған кездегі x=\frac{-30±30}{12} теңдеуін шешіңіз. -30 санын 30 санына қосу.
x=0
0 санын 12 санына бөліңіз.
x=-\frac{60}{12}
Енді ± минус болған кездегі x=\frac{-30±30}{12} теңдеуін шешіңіз. 30 мәнінен -30 мәнін алу.
x=-5
-60 санын 12 санына бөліңіз.
x=0 x=-5
Теңдеу енді шешілді.
6x^{2}+30x=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
\frac{6x^{2}+30x}{6}=\frac{0}{6}
Екі жағын да 6 санына бөліңіз.
x^{2}+\frac{30}{6}x=\frac{0}{6}
6 санына бөлген кезде 6 санына көбейту әрекетінің күшін жояды.
x^{2}+5x=\frac{0}{6}
30 санын 6 санына бөліңіз.
x^{2}+5x=0
0 санын 6 санына бөліңіз.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын 5 санын 2 мәніне бөлсеңіз, \frac{5}{2} саны шығады. Содан соң, теңдеудің екі жағына \frac{5}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{5}{2} бөлшегінің квадратын табыңыз.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}+5x+\frac{25}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Қысқартыңыз.
x=0 x=-5
Теңдеудің екі жағынан \frac{5}{2} санын алып тастаңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}