x мәнін табыңыз
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=\frac{1}{2}=0.5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
a+b=7 ab=6\left(-5\right)=-30
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 6x^{2}+ax+bx-5 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,30 -2,15 -3,10 -5,6
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -30 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Әр жұптың қосындысын есептеңіз.
a=-3 b=10
Шешім — бұл 7 қосындысын беретін жұп.
\left(6x^{2}-3x\right)+\left(10x-5\right)
6x^{2}+7x-5 мәнін \left(6x^{2}-3x\right)+\left(10x-5\right) ретінде қайта жазыңыз.
3x\left(2x-1\right)+5\left(2x-1\right)
Бірінші топтағы 3x ортақ көбейткішін және екінші топтағы 5 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(2x-1\right)\left(3x+5\right)
Үлестіру сипаты арқылы 2x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
x=\frac{1}{2} x=-\frac{5}{3}
Теңдеулердің шешімін табу үшін, 2x-1=0 және 3x+5=0 теңдіктерін шешіңіз.
6x^{2}+7x-5=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-5\right)}}{2\times 6}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 6 санын a мәніне, 7 санын b мәніне және -5 санын c мәніне ауыстырыңыз.
x=\frac{-7±\sqrt{49-4\times 6\left(-5\right)}}{2\times 6}
7 санының квадратын шығарыңыз.
x=\frac{-7±\sqrt{49-24\left(-5\right)}}{2\times 6}
-4 санын 6 санына көбейтіңіз.
x=\frac{-7±\sqrt{49+120}}{2\times 6}
-24 санын -5 санына көбейтіңіз.
x=\frac{-7±\sqrt{169}}{2\times 6}
49 санын 120 санына қосу.
x=\frac{-7±13}{2\times 6}
169 санының квадраттық түбірін шығарыңыз.
x=\frac{-7±13}{12}
2 санын 6 санына көбейтіңіз.
x=\frac{6}{12}
Енді ± плюс болған кездегі x=\frac{-7±13}{12} теңдеуін шешіңіз. -7 санын 13 санына қосу.
x=\frac{1}{2}
6 мәнін шегеру және алу арқылы \frac{6}{12} үлесін ең аз мәнге азайтыңыз.
x=-\frac{20}{12}
Енді ± минус болған кездегі x=\frac{-7±13}{12} теңдеуін шешіңіз. 13 мәнінен -7 мәнін алу.
x=-\frac{5}{3}
4 мәнін шегеру және алу арқылы \frac{-20}{12} үлесін ең аз мәнге азайтыңыз.
x=\frac{1}{2} x=-\frac{5}{3}
Теңдеу енді шешілді.
6x^{2}+7x-5=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
6x^{2}+7x-5-\left(-5\right)=-\left(-5\right)
Теңдеудің екі жағына да 5 санын қосыңыз.
6x^{2}+7x=-\left(-5\right)
-5 санынан осы санның өзін алып тастаған кезде 0 қалады.
6x^{2}+7x=5
-5 мәнінен 0 мәнін алу.
\frac{6x^{2}+7x}{6}=\frac{5}{6}
Екі жағын да 6 санына бөліңіз.
x^{2}+\frac{7}{6}x=\frac{5}{6}
6 санына бөлген кезде 6 санына көбейту әрекетінің күшін жояды.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын \frac{7}{6} санын 2 мәніне бөлсеңіз, \frac{7}{12} саны шығады. Содан соң, теңдеудің екі жағына \frac{7}{12} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{5}{6}+\frac{49}{144}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{7}{12} бөлшегінің квадратын табыңыз.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{169}{144}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{5}{6} бөлшегіне \frac{49}{144} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x+\frac{7}{12}\right)^{2}=\frac{169}{144}
x^{2}+\frac{7}{6}x+\frac{49}{144} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{7}{12}=\frac{13}{12} x+\frac{7}{12}=-\frac{13}{12}
Қысқартыңыз.
x=\frac{1}{2} x=-\frac{5}{3}
Теңдеудің екі жағынан \frac{7}{12} санын алып тастаңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}