Көбейткіштерге жіктеу
5\left(f-5\right)\left(f-3\right)
Есептеу
5\left(f-5\right)\left(f-3\right)
Ортақ пайдалану
Алмасу буферіне көшірілген
5\left(f^{2}-8f+15\right)
5 ортақ көбейткішін жақшаның сыртына шығарыңыз.
a+b=-8 ab=1\times 15=15
f^{2}-8f+15 өрнегін қарастырыңыз. Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек f^{2}+af+bf+15 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-15 -3,-5
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 15 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-15=-16 -3-5=-8
Әр жұптың қосындысын есептеңіз.
a=-5 b=-3
Шешім — бұл -8 қосындысын беретін жұп.
\left(f^{2}-5f\right)+\left(-3f+15\right)
f^{2}-8f+15 мәнін \left(f^{2}-5f\right)+\left(-3f+15\right) ретінде қайта жазыңыз.
f\left(f-5\right)-3\left(f-5\right)
Бірінші топтағы f ортақ көбейткішін және екінші топтағы -3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(f-5\right)\left(f-3\right)
Үлестіру сипаты арқылы f-5 ортақ көбейткішін жақша сыртына шығарыңыз.
5\left(f-5\right)\left(f-3\right)
Толық көбейткішке жіктелген өрнекті қайта жазыңыз.
5f^{2}-40f+75=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
f=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 75}}{2\times 5}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
f=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 75}}{2\times 5}
-40 санының квадратын шығарыңыз.
f=\frac{-\left(-40\right)±\sqrt{1600-20\times 75}}{2\times 5}
-4 санын 5 санына көбейтіңіз.
f=\frac{-\left(-40\right)±\sqrt{1600-1500}}{2\times 5}
-20 санын 75 санына көбейтіңіз.
f=\frac{-\left(-40\right)±\sqrt{100}}{2\times 5}
1600 санын -1500 санына қосу.
f=\frac{-\left(-40\right)±10}{2\times 5}
100 санының квадраттық түбірін шығарыңыз.
f=\frac{40±10}{2\times 5}
-40 санына қарама-қарсы сан 40 мәніне тең.
f=\frac{40±10}{10}
2 санын 5 санына көбейтіңіз.
f=\frac{50}{10}
Енді ± плюс болған кездегі f=\frac{40±10}{10} теңдеуін шешіңіз. 40 санын 10 санына қосу.
f=5
50 санын 10 санына бөліңіз.
f=\frac{30}{10}
Енді ± минус болған кездегі f=\frac{40±10}{10} теңдеуін шешіңіз. 10 мәнінен 40 мәнін алу.
f=3
30 санын 10 санына бөліңіз.
5f^{2}-40f+75=5\left(f-5\right)\left(f-3\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 5 санын, ал x_{2} мәнінің орнына 3 санын қойыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}