Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x\left(5x+3\right)
x ортақ көбейткішін жақшаның сыртына шығарыңыз.
5x^{2}+3x=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-3±\sqrt{3^{2}}}{2\times 5}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-3±3}{2\times 5}
3^{2} санының квадраттық түбірін шығарыңыз.
x=\frac{-3±3}{10}
2 санын 5 санына көбейтіңіз.
x=\frac{0}{10}
Енді ± плюс болған кездегі x=\frac{-3±3}{10} теңдеуін шешіңіз. -3 санын 3 санына қосу.
x=0
0 санын 10 санына бөліңіз.
x=-\frac{6}{10}
Енді ± минус болған кездегі x=\frac{-3±3}{10} теңдеуін шешіңіз. 3 мәнінен -3 мәнін алу.
x=-\frac{3}{5}
2 мәнін шегеру және алу арқылы \frac{-6}{10} үлесін ең аз мәнге азайтыңыз.
5x^{2}+3x=5x\left(x-\left(-\frac{3}{5}\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 0 санын, ал x_{2} мәнінің орнына -\frac{3}{5} санын қойыңыз.
5x^{2}+3x=5x\left(x+\frac{3}{5}\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
5x^{2}+3x=5x\times \frac{5x+3}{5}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{3}{5} бөлшегіне x бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
5x^{2}+3x=x\left(5x+3\right)
5 және 5 ішіндегі ең үлкен 5 бөлгішті қысқартыңыз.