Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз (complex solution)
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

4x^{2}+7x+33=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-7±\sqrt{7^{2}-4\times 4\times 33}}{2\times 4}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 4 санын a мәніне, 7 санын b мәніне және 33 санын c мәніне ауыстырыңыз.
x=\frac{-7±\sqrt{49-4\times 4\times 33}}{2\times 4}
7 санының квадратын шығарыңыз.
x=\frac{-7±\sqrt{49-16\times 33}}{2\times 4}
-4 санын 4 санына көбейтіңіз.
x=\frac{-7±\sqrt{49-528}}{2\times 4}
-16 санын 33 санына көбейтіңіз.
x=\frac{-7±\sqrt{-479}}{2\times 4}
49 санын -528 санына қосу.
x=\frac{-7±\sqrt{479}i}{2\times 4}
-479 санының квадраттық түбірін шығарыңыз.
x=\frac{-7±\sqrt{479}i}{8}
2 санын 4 санына көбейтіңіз.
x=\frac{-7+\sqrt{479}i}{8}
Енді ± плюс болған кездегі x=\frac{-7±\sqrt{479}i}{8} теңдеуін шешіңіз. -7 санын i\sqrt{479} санына қосу.
x=\frac{-\sqrt{479}i-7}{8}
Енді ± минус болған кездегі x=\frac{-7±\sqrt{479}i}{8} теңдеуін шешіңіз. i\sqrt{479} мәнінен -7 мәнін алу.
x=\frac{-7+\sqrt{479}i}{8} x=\frac{-\sqrt{479}i-7}{8}
Теңдеу енді шешілді.
4x^{2}+7x+33=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
4x^{2}+7x+33-33=-33
Теңдеудің екі жағынан 33 санын алып тастаңыз.
4x^{2}+7x=-33
33 санынан осы санның өзін алып тастаған кезде 0 қалады.
\frac{4x^{2}+7x}{4}=-\frac{33}{4}
Екі жағын да 4 санына бөліңіз.
x^{2}+\frac{7}{4}x=-\frac{33}{4}
4 санына бөлген кезде 4 санына көбейту әрекетінің күшін жояды.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=-\frac{33}{4}+\left(\frac{7}{8}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын \frac{7}{4} санын 2 мәніне бөлсеңіз, \frac{7}{8} саны шығады. Содан соң, теңдеудің екі жағына \frac{7}{8} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{33}{4}+\frac{49}{64}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{7}{8} бөлшегінің квадратын табыңыз.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{479}{64}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{33}{4} бөлшегіне \frac{49}{64} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x+\frac{7}{8}\right)^{2}=-\frac{479}{64}
x^{2}+\frac{7}{4}x+\frac{49}{64} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{-\frac{479}{64}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{7}{8}=\frac{\sqrt{479}i}{8} x+\frac{7}{8}=-\frac{\sqrt{479}i}{8}
Қысқартыңыз.
x=\frac{-7+\sqrt{479}i}{8} x=\frac{-\sqrt{479}i-7}{8}
Теңдеудің екі жағынан \frac{7}{8} санын алып тастаңыз.