Есептеу
12n^{3}
n қатысты айыру
36n^{2}
Ортақ пайдалану
Алмасу буферіне көшірілген
4n^{2}\times 3n
n^{2} шығару үшін, n және n сандарын көбейтіңіз.
4n^{3}\times 3
Бір негіздің дәрежелерін көбейту үшін, олардың дәреже көрсеткіштерін қосыңыз. 3 көрсеткішін алу үшін, 2 және 1 мәндерін қосыңыз.
12n^{3}
12 шығару үшін, 4 және 3 сандарын көбейтіңіз.
\frac{\mathrm{d}}{\mathrm{d}n}(4n^{2}\times 3n)
n^{2} шығару үшін, n және n сандарын көбейтіңіз.
\frac{\mathrm{d}}{\mathrm{d}n}(4n^{3}\times 3)
Бір негіздің дәрежелерін көбейту үшін, олардың дәреже көрсеткіштерін қосыңыз. 3 көрсеткішін алу үшін, 2 және 1 мәндерін қосыңыз.
\frac{\mathrm{d}}{\mathrm{d}n}(12n^{3})
12 шығару үшін, 4 және 3 сандарын көбейтіңіз.
3\times 12n^{3-1}
ax^{n} туындысы nax^{n-1} болып табылады.
36n^{3-1}
3 санын 12 санына көбейтіңіз.
36n^{2}
1 мәнінен 3 мәнін алу.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}