Көбейткіштерге жіктеу
-\left(x-10\right)\left(x+3\right)
Есептеу
-\left(x-10\right)\left(x+3\right)
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
-x^{2}+7x+30
Көпмүшені стандартты пішінге келтіру үшін, оны қайта реттеңіз. Бос мүшелерді ең жоғарғысынан ең төменгі дәреже көрсеткішіне дейінгі ретпен орналастырыңыз.
a+b=7 ab=-30=-30
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек -x^{2}+ax+bx+30 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,30 -2,15 -3,10 -5,6
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -30 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Әр жұптың қосындысын есептеңіз.
a=10 b=-3
Шешім — бұл 7 қосындысын беретін жұп.
\left(-x^{2}+10x\right)+\left(-3x+30\right)
-x^{2}+7x+30 мәнін \left(-x^{2}+10x\right)+\left(-3x+30\right) ретінде қайта жазыңыз.
-x\left(x-10\right)-3\left(x-10\right)
Бірінші топтағы -x ортақ көбейткішін және екінші топтағы -3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-10\right)\left(-x-3\right)
Үлестіру сипаты арқылы x-10 ортақ көбейткішін жақша сыртына шығарыңыз.
-x^{2}+7x+30=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\times 30}}{2\left(-1\right)}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-7±\sqrt{49-4\left(-1\right)\times 30}}{2\left(-1\right)}
7 санының квадратын шығарыңыз.
x=\frac{-7±\sqrt{49+4\times 30}}{2\left(-1\right)}
-4 санын -1 санына көбейтіңіз.
x=\frac{-7±\sqrt{49+120}}{2\left(-1\right)}
4 санын 30 санына көбейтіңіз.
x=\frac{-7±\sqrt{169}}{2\left(-1\right)}
49 санын 120 санына қосу.
x=\frac{-7±13}{2\left(-1\right)}
169 санының квадраттық түбірін шығарыңыз.
x=\frac{-7±13}{-2}
2 санын -1 санына көбейтіңіз.
x=\frac{6}{-2}
Енді ± плюс болған кездегі x=\frac{-7±13}{-2} теңдеуін шешіңіз. -7 санын 13 санына қосу.
x=-3
6 санын -2 санына бөліңіз.
x=-\frac{20}{-2}
Енді ± минус болған кездегі x=\frac{-7±13}{-2} теңдеуін шешіңіз. 13 мәнінен -7 мәнін алу.
x=10
-20 санын -2 санына бөліңіз.
-x^{2}+7x+30=-\left(x-\left(-3\right)\right)\left(x-10\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -3 санын, ал x_{2} мәнінің орнына 10 санын қойыңыз.
-x^{2}+7x+30=-\left(x+3\right)\left(x-10\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}