Көбейткіштерге жіктеу
3\left(x-4\right)\left(x+3\right)
Есептеу
3\left(x-4\right)\left(x+3\right)
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
3\left(x^{2}-x-12\right)
3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
a+b=-1 ab=1\left(-12\right)=-12
x^{2}-x-12 өрнегін қарастырыңыз. Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx-12 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-12 2,-6 3,-4
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -12 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-12=-11 2-6=-4 3-4=-1
Әр жұптың қосындысын есептеңіз.
a=-4 b=3
Шешім — бұл -1 қосындысын беретін жұп.
\left(x^{2}-4x\right)+\left(3x-12\right)
x^{2}-x-12 мәнін \left(x^{2}-4x\right)+\left(3x-12\right) ретінде қайта жазыңыз.
x\left(x-4\right)+3\left(x-4\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-4\right)\left(x+3\right)
Үлестіру сипаты арқылы x-4 ортақ көбейткішін жақша сыртына шығарыңыз.
3\left(x-4\right)\left(x+3\right)
Толық көбейткішке жіктелген өрнекті қайта жазыңыз.
3x^{2}-3x-36=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-36\right)}}{2\times 3}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-36\right)}}{2\times 3}
-3 санының квадратын шығарыңыз.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-36\right)}}{2\times 3}
-4 санын 3 санына көбейтіңіз.
x=\frac{-\left(-3\right)±\sqrt{9+432}}{2\times 3}
-12 санын -36 санына көбейтіңіз.
x=\frac{-\left(-3\right)±\sqrt{441}}{2\times 3}
9 санын 432 санына қосу.
x=\frac{-\left(-3\right)±21}{2\times 3}
441 санының квадраттық түбірін шығарыңыз.
x=\frac{3±21}{2\times 3}
-3 санына қарама-қарсы сан 3 мәніне тең.
x=\frac{3±21}{6}
2 санын 3 санына көбейтіңіз.
x=\frac{24}{6}
Енді ± плюс болған кездегі x=\frac{3±21}{6} теңдеуін шешіңіз. 3 санын 21 санына қосу.
x=4
24 санын 6 санына бөліңіз.
x=-\frac{18}{6}
Енді ± минус болған кездегі x=\frac{3±21}{6} теңдеуін шешіңіз. 21 мәнінен 3 мәнін алу.
x=-3
-18 санын 6 санына бөліңіз.
3x^{2}-3x-36=3\left(x-4\right)\left(x-\left(-3\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 4 санын, ал x_{2} мәнінің орнына -3 санын қойыңыз.
3x^{2}-3x-36=3\left(x-4\right)\left(x+3\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}