Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=17 ab=3\times 10=30
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек 3x^{2}+ax+bx+10 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,30 2,15 3,10 5,6
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 30 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+30=31 2+15=17 3+10=13 5+6=11
Әр жұптың қосындысын есептеңіз.
a=2 b=15
Шешім — бұл 17 қосындысын беретін жұп.
\left(3x^{2}+2x\right)+\left(15x+10\right)
3x^{2}+17x+10 мәнін \left(3x^{2}+2x\right)+\left(15x+10\right) ретінде қайта жазыңыз.
x\left(3x+2\right)+5\left(3x+2\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 5 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(3x+2\right)\left(x+5\right)
Үлестіру сипаты арқылы 3x+2 ортақ көбейткішін жақша сыртына шығарыңыз.
3x^{2}+17x+10=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-17±\sqrt{17^{2}-4\times 3\times 10}}{2\times 3}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-17±\sqrt{289-4\times 3\times 10}}{2\times 3}
17 санының квадратын шығарыңыз.
x=\frac{-17±\sqrt{289-12\times 10}}{2\times 3}
-4 санын 3 санына көбейтіңіз.
x=\frac{-17±\sqrt{289-120}}{2\times 3}
-12 санын 10 санына көбейтіңіз.
x=\frac{-17±\sqrt{169}}{2\times 3}
289 санын -120 санына қосу.
x=\frac{-17±13}{2\times 3}
169 санының квадраттық түбірін шығарыңыз.
x=\frac{-17±13}{6}
2 санын 3 санына көбейтіңіз.
x=-\frac{4}{6}
Енді ± плюс болған кездегі x=\frac{-17±13}{6} теңдеуін шешіңіз. -17 санын 13 санына қосу.
x=-\frac{2}{3}
2 мәнін шегеру және алу арқылы \frac{-4}{6} үлесін ең аз мәнге азайтыңыз.
x=-\frac{30}{6}
Енді ± минус болған кездегі x=\frac{-17±13}{6} теңдеуін шешіңіз. 13 мәнінен -17 мәнін алу.
x=-5
-30 санын 6 санына бөліңіз.
3x^{2}+17x+10=3\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-5\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -\frac{2}{3} санын, ал x_{2} мәнінің орнына -5 санын қойыңыз.
3x^{2}+17x+10=3\left(x+\frac{2}{3}\right)\left(x+5\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
3x^{2}+17x+10=3\times \frac{3x+2}{3}\left(x+5\right)
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{2}{3} бөлшегіне x бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
3x^{2}+17x+10=\left(3x+2\right)\left(x+5\right)
3 және 3 ішіндегі ең үлкен 3 бөлгішті қысқартыңыз.