Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

6x^{2}-2x=0
2x мәнін 3x-1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x\left(6x-2\right)=0
x ортақ көбейткішін жақшаның сыртына шығарыңыз.
x=0 x=\frac{1}{3}
Теңдеулердің шешімін табу үшін, x=0 және 6x-2=0 теңдіктерін шешіңіз.
6x^{2}-2x=0
2x мәнін 3x-1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 6}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 6 санын a мәніне, -2 санын b мәніне және 0 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-2\right)±2}{2\times 6}
\left(-2\right)^{2} санының квадраттық түбірін шығарыңыз.
x=\frac{2±2}{2\times 6}
-2 санына қарама-қарсы сан 2 мәніне тең.
x=\frac{2±2}{12}
2 санын 6 санына көбейтіңіз.
x=\frac{4}{12}
Енді ± плюс болған кездегі x=\frac{2±2}{12} теңдеуін шешіңіз. 2 санын 2 санына қосу.
x=\frac{1}{3}
4 мәнін шегеру және алу арқылы \frac{4}{12} үлесін ең аз мәнге азайтыңыз.
x=\frac{0}{12}
Енді ± минус болған кездегі x=\frac{2±2}{12} теңдеуін шешіңіз. 2 мәнінен 2 мәнін алу.
x=0
0 санын 12 санына бөліңіз.
x=\frac{1}{3} x=0
Теңдеу енді шешілді.
6x^{2}-2x=0
2x мәнін 3x-1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{6x^{2}-2x}{6}=\frac{0}{6}
Екі жағын да 6 санына бөліңіз.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{0}{6}
6 санына бөлген кезде 6 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{1}{3}x=\frac{0}{6}
2 мәнін шегеру және алу арқылы \frac{-2}{6} үлесін ең аз мәнге азайтыңыз.
x^{2}-\frac{1}{3}x=0
0 санын 6 санына бөліңіз.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{1}{3} санын 2 мәніне бөлсеңіз, -\frac{1}{6} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{6} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{6} бөлшегінің квадратын табыңыз.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Қысқартыңыз.
x=\frac{1}{3} x=0
Теңдеудің екі жағына да \frac{1}{6} санын қосыңыз.