Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x\left(2-3x\right)=0
x ортақ көбейткішін жақшаның сыртына шығарыңыз.
x=0 x=\frac{2}{3}
Теңдеулердің шешімін табу үшін, x=0 және 2-3x=0 теңдіктерін шешіңіз.
-3x^{2}+2x=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-3\right)}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде -3 санын a мәніне, 2 санын b мәніне және 0 санын c мәніне ауыстырыңыз.
x=\frac{-2±2}{2\left(-3\right)}
2^{2} санының квадраттық түбірін шығарыңыз.
x=\frac{-2±2}{-6}
2 санын -3 санына көбейтіңіз.
x=\frac{0}{-6}
Енді ± плюс болған кездегі x=\frac{-2±2}{-6} теңдеуін шешіңіз. -2 санын 2 санына қосу.
x=0
0 санын -6 санына бөліңіз.
x=-\frac{4}{-6}
Енді ± минус болған кездегі x=\frac{-2±2}{-6} теңдеуін шешіңіз. 2 мәнінен -2 мәнін алу.
x=\frac{2}{3}
2 мәнін шегеру және алу арқылы \frac{-4}{-6} үлесін ең аз мәнге азайтыңыз.
x=0 x=\frac{2}{3}
Теңдеу енді шешілді.
-3x^{2}+2x=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
\frac{-3x^{2}+2x}{-3}=\frac{0}{-3}
Екі жағын да -3 санына бөліңіз.
x^{2}+\frac{2}{-3}x=\frac{0}{-3}
-3 санына бөлген кезде -3 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{2}{3}x=\frac{0}{-3}
2 санын -3 санына бөліңіз.
x^{2}-\frac{2}{3}x=0
0 санын -3 санына бөліңіз.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{2}{3} санын 2 мәніне бөлсеңіз, -\frac{1}{3} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{3} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{3} бөлшегінің квадратын табыңыз.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Қысқартыңыз.
x=\frac{2}{3} x=0
Теңдеудің екі жағына да \frac{1}{3} санын қосыңыз.