x мәнін табыңыз
x=-4
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Граф
Викторина
Polynomial
2 x ^ { 2 } - x - 36 = 0
Ортақ пайдалану
Алмасу буферіне көшірілген
a+b=-1 ab=2\left(-36\right)=-72
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 2x^{2}+ax+bx-36 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -72 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Әр жұптың қосындысын есептеңіз.
a=-9 b=8
Шешім — бұл -1 қосындысын беретін жұп.
\left(2x^{2}-9x\right)+\left(8x-36\right)
2x^{2}-x-36 мәнін \left(2x^{2}-9x\right)+\left(8x-36\right) ретінде қайта жазыңыз.
x\left(2x-9\right)+4\left(2x-9\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 4 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(2x-9\right)\left(x+4\right)
Үлестіру сипаты арқылы 2x-9 ортақ көбейткішін жақша сыртына шығарыңыз.
x=\frac{9}{2} x=-4
Теңдеулердің шешімін табу үшін, 2x-9=0 және x+4=0 теңдіктерін шешіңіз.
2x^{2}-x-36=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-36\right)}}{2\times 2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 2 санын a мәніне, -1 санын b мәніне және -36 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-36\right)}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 2}
-8 санын -36 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 2}
1 санын 288 санына қосу.
x=\frac{-\left(-1\right)±17}{2\times 2}
289 санының квадраттық түбірін шығарыңыз.
x=\frac{1±17}{2\times 2}
-1 санына қарама-қарсы сан 1 мәніне тең.
x=\frac{1±17}{4}
2 санын 2 санына көбейтіңіз.
x=\frac{18}{4}
Енді ± плюс болған кездегі x=\frac{1±17}{4} теңдеуін шешіңіз. 1 санын 17 санына қосу.
x=\frac{9}{2}
2 мәнін шегеру және алу арқылы \frac{18}{4} үлесін ең аз мәнге азайтыңыз.
x=-\frac{16}{4}
Енді ± минус болған кездегі x=\frac{1±17}{4} теңдеуін шешіңіз. 17 мәнінен 1 мәнін алу.
x=-4
-16 санын 4 санына бөліңіз.
x=\frac{9}{2} x=-4
Теңдеу енді шешілді.
2x^{2}-x-36=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
2x^{2}-x-36-\left(-36\right)=-\left(-36\right)
Теңдеудің екі жағына да 36 санын қосыңыз.
2x^{2}-x=-\left(-36\right)
-36 санынан осы санның өзін алып тастаған кезде 0 қалады.
2x^{2}-x=36
-36 мәнінен 0 мәнін алу.
\frac{2x^{2}-x}{2}=\frac{36}{2}
Екі жағын да 2 санына бөліңіз.
x^{2}-\frac{1}{2}x=\frac{36}{2}
2 санына бөлген кезде 2 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{1}{2}x=18
36 санын 2 санына бөліңіз.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=18+\left(-\frac{1}{4}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{1}{2} санын 2 мәніне бөлсеңіз, -\frac{1}{4} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{4} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{1}{2}x+\frac{1}{16}=18+\frac{1}{16}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{4} бөлшегінің квадратын табыңыз.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{289}{16}
18 санын \frac{1}{16} санына қосу.
\left(x-\frac{1}{4}\right)^{2}=\frac{289}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} формуласын көбейткіштерге жіктеңіз. Жалпы, x^{2}+bx+c мәні толық квадрат болғанда, оны әрқашан \left(x+\frac{b}{2}\right)^{2} ретінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{4}=\frac{17}{4} x-\frac{1}{4}=-\frac{17}{4}
Қысқартыңыз.
x=\frac{9}{2} x=-4
Теңдеудің екі жағына да \frac{1}{4} санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}