Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}-4x-12=0
Екі жағын да 2 санына бөліңіз.
a+b=-4 ab=1\left(-12\right)=-12
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx-12 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-12 2,-6 3,-4
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -12 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-12=-11 2-6=-4 3-4=-1
Әр жұптың қосындысын есептеңіз.
a=-6 b=2
Шешім — бұл -4 қосындысын беретін жұп.
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 мәнін \left(x^{2}-6x\right)+\left(2x-12\right) ретінде қайта жазыңыз.
x\left(x-6\right)+2\left(x-6\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-6\right)\left(x+2\right)
Үлестіру сипаты арқылы x-6 ортақ көбейткішін жақша сыртына шығарыңыз.
x=6 x=-2
Теңдеулердің шешімін табу үшін, x-6=0 және x+2=0 теңдіктерін шешіңіз.
2x^{2}-8x-24=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 2 санын a мәніне, -8 санын b мәніне және -24 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
-8 санының квадратын шығарыңыз.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
-8 санын -24 санына көбейтіңіз.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
64 санын 192 санына қосу.
x=\frac{-\left(-8\right)±16}{2\times 2}
256 санының квадраттық түбірін шығарыңыз.
x=\frac{8±16}{2\times 2}
-8 санына қарама-қарсы сан 8 мәніне тең.
x=\frac{8±16}{4}
2 санын 2 санына көбейтіңіз.
x=\frac{24}{4}
Енді ± плюс болған кездегі x=\frac{8±16}{4} теңдеуін шешіңіз. 8 санын 16 санына қосу.
x=6
24 санын 4 санына бөліңіз.
x=-\frac{8}{4}
Енді ± минус болған кездегі x=\frac{8±16}{4} теңдеуін шешіңіз. 16 мәнінен 8 мәнін алу.
x=-2
-8 санын 4 санына бөліңіз.
x=6 x=-2
Теңдеу енді шешілді.
2x^{2}-8x-24=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
2x^{2}-8x-24-\left(-24\right)=-\left(-24\right)
Теңдеудің екі жағына да 24 санын қосыңыз.
2x^{2}-8x=-\left(-24\right)
-24 санынан осы санның өзін алып тастаған кезде 0 қалады.
2x^{2}-8x=24
-24 мәнінен 0 мәнін алу.
\frac{2x^{2}-8x}{2}=\frac{24}{2}
Екі жағын да 2 санына бөліңіз.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{24}{2}
2 санына бөлген кезде 2 санына көбейту әрекетінің күшін жояды.
x^{2}-4x=\frac{24}{2}
-8 санын 2 санына бөліңіз.
x^{2}-4x=12
24 санын 2 санына бөліңіз.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -4 санын 2 мәніне бөлсеңіз, -2 саны шығады. Содан соң, теңдеудің екі жағына -2 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-4x+4=12+4
-2 санының квадратын шығарыңыз.
x^{2}-4x+4=16
12 санын 4 санына қосу.
\left(x-2\right)^{2}=16
x^{2}-4x+4 көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-2=4 x-2=-4
Қысқартыңыз.
x=6 x=-2
Теңдеудің екі жағына да 2 санын қосыңыз.