Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

2\left(x^{2}-x-6\right)
2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
a+b=-1 ab=1\left(-6\right)=-6
x^{2}-x-6 өрнегін қарастырыңыз. Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx-6 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-6 2,-3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-6=-5 2-3=-1
Әр жұптың қосындысын есептеңіз.
a=-3 b=2
Шешім — бұл -1 қосындысын беретін жұп.
\left(x^{2}-3x\right)+\left(2x-6\right)
x^{2}-x-6 мәнін \left(x^{2}-3x\right)+\left(2x-6\right) ретінде қайта жазыңыз.
x\left(x-3\right)+2\left(x-3\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-3\right)\left(x+2\right)
Үлестіру сипаты арқылы x-3 ортақ көбейткішін жақша сыртына шығарыңыз.
2\left(x-3\right)\left(x+2\right)
Толық көбейткішке жіктелген өрнекті қайта жазыңыз.
2x^{2}-2x-12=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-12\right)}}{2\times 2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
-2 санының квадратын шығарыңыз.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-12\right)}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 2}
-8 санын -12 санына көбейтіңіз.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 2}
4 санын 96 санына қосу.
x=\frac{-\left(-2\right)±10}{2\times 2}
100 санының квадраттық түбірін шығарыңыз.
x=\frac{2±10}{2\times 2}
-2 санына қарама-қарсы сан 2 мәніне тең.
x=\frac{2±10}{4}
2 санын 2 санына көбейтіңіз.
x=\frac{12}{4}
Енді ± плюс болған кездегі x=\frac{2±10}{4} теңдеуін шешіңіз. 2 санын 10 санына қосу.
x=3
12 санын 4 санына бөліңіз.
x=-\frac{8}{4}
Енді ± минус болған кездегі x=\frac{2±10}{4} теңдеуін шешіңіз. 10 мәнінен 2 мәнін алу.
x=-2
-8 санын 4 санына бөліңіз.
2x^{2}-2x-12=2\left(x-3\right)\left(x-\left(-2\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 3 санын, ал x_{2} мәнінің орнына -2 санын қойыңыз.
2x^{2}-2x-12=2\left(x-3\right)\left(x+2\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.