Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=7 ab=2\times 5=10
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 2x^{2}+ax+bx+5 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,10 2,5
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 10 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+10=11 2+5=7
Әр жұптың қосындысын есептеңіз.
a=2 b=5
Шешім — бұл 7 қосындысын беретін жұп.
\left(2x^{2}+2x\right)+\left(5x+5\right)
2x^{2}+7x+5 мәнін \left(2x^{2}+2x\right)+\left(5x+5\right) ретінде қайта жазыңыз.
2x\left(x+1\right)+5\left(x+1\right)
Бірінші топтағы 2x ортақ көбейткішін және екінші топтағы 5 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x+1\right)\left(2x+5\right)
Үлестіру сипаты арқылы x+1 ортақ көбейткішін жақша сыртына шығарыңыз.
x=-1 x=-\frac{5}{2}
Теңдеулердің шешімін табу үшін, x+1=0 және 2x+5=0 теңдіктерін шешіңіз.
2x^{2}+7x+5=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 2 санын a мәніне, 7 санын b мәніне және 5 санын c мәніне ауыстырыңыз.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
7 санының квадратын шығарыңыз.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
-8 санын 5 санына көбейтіңіз.
x=\frac{-7±\sqrt{9}}{2\times 2}
49 санын -40 санына қосу.
x=\frac{-7±3}{2\times 2}
9 санының квадраттық түбірін шығарыңыз.
x=\frac{-7±3}{4}
2 санын 2 санына көбейтіңіз.
x=-\frac{4}{4}
Енді ± плюс болған кездегі x=\frac{-7±3}{4} теңдеуін шешіңіз. -7 санын 3 санына қосу.
x=-1
-4 санын 4 санына бөліңіз.
x=-\frac{10}{4}
Енді ± минус болған кездегі x=\frac{-7±3}{4} теңдеуін шешіңіз. 3 мәнінен -7 мәнін алу.
x=-\frac{5}{2}
2 мәнін шегеру және алу арқылы \frac{-10}{4} үлесін ең аз мәнге азайтыңыз.
x=-1 x=-\frac{5}{2}
Теңдеу енді шешілді.
2x^{2}+7x+5=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
2x^{2}+7x+5-5=-5
Теңдеудің екі жағынан 5 санын алып тастаңыз.
2x^{2}+7x=-5
5 санынан осы санның өзін алып тастаған кезде 0 қалады.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
Екі жағын да 2 санына бөліңіз.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
2 санына бөлген кезде 2 санына көбейту әрекетінің күшін жояды.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын \frac{7}{2} санын 2 мәніне бөлсеңіз, \frac{7}{4} саны шығады. Содан соң, теңдеудің екі жағына \frac{7}{4} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{7}{4} бөлшегінің квадратын табыңыз.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{5}{2} бөлшегіне \frac{49}{16} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
x^{2}+\frac{7}{2}x+\frac{49}{16} формуласын көбейткіштерге жіктеңіз. Жалпы, x^{2}+bx+c мәні толық квадрат болғанда, оны әрқашан \left(x+\frac{b}{2}\right)^{2} ретінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Қысқартыңыз.
x=-1 x=-\frac{5}{2}
Теңдеудің екі жағынан \frac{7}{4} санын алып тастаңыз.