Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=7 ab=2\times 5=10
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек 2x^{2}+ax+bx+5 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,10 2,5
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 10 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+10=11 2+5=7
Әр жұптың қосындысын есептеңіз.
a=2 b=5
Шешім — бұл 7 қосындысын беретін жұп.
\left(2x^{2}+2x\right)+\left(5x+5\right)
2x^{2}+7x+5 мәнін \left(2x^{2}+2x\right)+\left(5x+5\right) ретінде қайта жазыңыз.
2x\left(x+1\right)+5\left(x+1\right)
Бірінші топтағы 2x ортақ көбейткішін және екінші топтағы 5 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x+1\right)\left(2x+5\right)
Үлестіру сипаты арқылы x+1 ортақ көбейткішін жақша сыртына шығарыңыз.
2x^{2}+7x+5=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
7 санының квадратын шығарыңыз.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
-8 санын 5 санына көбейтіңіз.
x=\frac{-7±\sqrt{9}}{2\times 2}
49 санын -40 санына қосу.
x=\frac{-7±3}{2\times 2}
9 санының квадраттық түбірін шығарыңыз.
x=\frac{-7±3}{4}
2 санын 2 санына көбейтіңіз.
x=-\frac{4}{4}
Енді ± плюс болған кездегі x=\frac{-7±3}{4} теңдеуін шешіңіз. -7 санын 3 санына қосу.
x=-1
-4 санын 4 санына бөліңіз.
x=-\frac{10}{4}
Енді ± минус болған кездегі x=\frac{-7±3}{4} теңдеуін шешіңіз. 3 мәнінен -7 мәнін алу.
x=-\frac{5}{2}
2 мәнін шегеру және алу арқылы \frac{-10}{4} үлесін ең аз мәнге азайтыңыз.
2x^{2}+7x+5=2\left(x-\left(-1\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -1 санын, ал x_{2} мәнінің орнына -\frac{5}{2} санын қойыңыз.
2x^{2}+7x+5=2\left(x+1\right)\left(x+\frac{5}{2}\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
2x^{2}+7x+5=2\left(x+1\right)\times \frac{2x+5}{2}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{5}{2} бөлшегіне x бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
2x^{2}+7x+5=\left(x+1\right)\left(2x+5\right)
2 және 2 ішіндегі ең үлкен 2 бөлгішті қысқартыңыз.