Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=5 ab=2\left(-3\right)=-6
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек 2x^{2}+ax+bx-3 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,6 -2,3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+6=5 -2+3=1
Әр жұптың қосындысын есептеңіз.
a=-1 b=6
Шешім — бұл 5 қосындысын беретін жұп.
\left(2x^{2}-x\right)+\left(6x-3\right)
2x^{2}+5x-3 мәнін \left(2x^{2}-x\right)+\left(6x-3\right) ретінде қайта жазыңыз.
x\left(2x-1\right)+3\left(2x-1\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(2x-1\right)\left(x+3\right)
Үлестіру сипаты арқылы 2x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
2x^{2}+5x-3=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-3\right)}}{2\times 2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-5±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
5 санының квадратын шығарыңыз.
x=\frac{-5±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-5±\sqrt{25+24}}{2\times 2}
-8 санын -3 санына көбейтіңіз.
x=\frac{-5±\sqrt{49}}{2\times 2}
25 санын 24 санына қосу.
x=\frac{-5±7}{2\times 2}
49 санының квадраттық түбірін шығарыңыз.
x=\frac{-5±7}{4}
2 санын 2 санына көбейтіңіз.
x=\frac{2}{4}
Енді ± плюс болған кездегі x=\frac{-5±7}{4} теңдеуін шешіңіз. -5 санын 7 санына қосу.
x=\frac{1}{2}
2 мәнін шегеру және алу арқылы \frac{2}{4} үлесін ең аз мәнге азайтыңыз.
x=-\frac{12}{4}
Енді ± минус болған кездегі x=\frac{-5±7}{4} теңдеуін шешіңіз. 7 мәнінен -5 мәнін алу.
x=-3
-12 санын 4 санына бөліңіз.
2x^{2}+5x-3=2\left(x-\frac{1}{2}\right)\left(x-\left(-3\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына \frac{1}{2} санын, ал x_{2} мәнінің орнына -3 санын қойыңыз.
2x^{2}+5x-3=2\left(x-\frac{1}{2}\right)\left(x+3\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
2x^{2}+5x-3=2\times \frac{2x-1}{2}\left(x+3\right)
Ортақ бөлгішін тауып, алымдарын алу арқылы \frac{1}{2} мәнін x мәнінен алыңыз. Содан соң, қажетінше, бөлшекті барынша қысқартыңыз.
2x^{2}+5x-3=\left(2x-1\right)\left(x+3\right)
2 және 2 ішіндегі ең үлкен 2 бөлгішті қысқартыңыз.