2 x + 7 < 2 ( 4 x - 1
x теңдеуін шешу
x>\frac{3}{2}
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2x+7<8x-2
2 мәнін 4x-1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
2x+7-8x<-2
Екі жағынан да 8x мәнін қысқартыңыз.
-6x+7<-2
2x және -8x мәндерін қоссаңыз, -6x мәні шығады.
-6x<-2-7
Екі жағынан да 7 мәнін қысқартыңыз.
-6x<-9
-9 мәнін алу үшін, -2 мәнінен 7 мәнін алып тастаңыз.
x>\frac{-9}{-6}
Екі жағын да -6 санына бөліңіз. -6 <0 болғандықтан, теңсіздік бағыты өзгереді.
x>\frac{3}{2}
-3 мәнін шегеру және алу арқылы \frac{-9}{-6} үлесін ең аз мәнге азайтыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}