x мәнін табыңыз
x=\frac{-\sqrt{33}-3}{4}\approx -2.186140662
x=3
x=\frac{\sqrt{33}-3}{4}\approx 0.686140662
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2x^{3}-3x^{2}-12x+9=0
Екі жағына 9 қосу.
±\frac{9}{2},±9,±\frac{3}{2},±3,±\frac{1}{2},±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі 9 бос мүшесін, ал q өрнегі 2 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=3
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
2x^{2}+3x-3=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. 2x^{2}+3x-3 нәтижесін алу үшін, 2x^{3}-3x^{2}-12x+9 мәнін x-3 мәніне бөліңіз. Нәтижесі 0 мәніне тең болатын теңдеуді шешіңіз.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-3\right)}}{2\times 2}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 2 мәнін a мәніне, 3 мәнін b мәніне және -3 мәнін c мәніне ауыстырыңыз.
x=\frac{-3±\sqrt{33}}{4}
Есептеңіз.
x=\frac{-\sqrt{33}-3}{4} x=\frac{\sqrt{33}-3}{4}
± мәні плюс, ал ± мәні минус болған кездегі "2x^{2}+3x-3=0" теңдеуін шешіңіз.
x=3 x=\frac{-\sqrt{33}-3}{4} x=\frac{\sqrt{33}-3}{4}
Барлық табылған шешімдердің тізімі.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}