Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

13x^{2}-66x+36=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 13\times 36}}{2\times 13}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-66\right)±\sqrt{4356-4\times 13\times 36}}{2\times 13}
-66 санының квадратын шығарыңыз.
x=\frac{-\left(-66\right)±\sqrt{4356-52\times 36}}{2\times 13}
-4 санын 13 санына көбейтіңіз.
x=\frac{-\left(-66\right)±\sqrt{4356-1872}}{2\times 13}
-52 санын 36 санына көбейтіңіз.
x=\frac{-\left(-66\right)±\sqrt{2484}}{2\times 13}
4356 санын -1872 санына қосу.
x=\frac{-\left(-66\right)±6\sqrt{69}}{2\times 13}
2484 санының квадраттық түбірін шығарыңыз.
x=\frac{66±6\sqrt{69}}{2\times 13}
-66 санына қарама-қарсы сан 66 мәніне тең.
x=\frac{66±6\sqrt{69}}{26}
2 санын 13 санына көбейтіңіз.
x=\frac{6\sqrt{69}+66}{26}
Енді ± плюс болған кездегі x=\frac{66±6\sqrt{69}}{26} теңдеуін шешіңіз. 66 санын 6\sqrt{69} санына қосу.
x=\frac{3\sqrt{69}+33}{13}
66+6\sqrt{69} санын 26 санына бөліңіз.
x=\frac{66-6\sqrt{69}}{26}
Енді ± минус болған кездегі x=\frac{66±6\sqrt{69}}{26} теңдеуін шешіңіз. 6\sqrt{69} мәнінен 66 мәнін алу.
x=\frac{33-3\sqrt{69}}{13}
66-6\sqrt{69} санын 26 санына бөліңіз.
13x^{2}-66x+36=13\left(x-\frac{3\sqrt{69}+33}{13}\right)\left(x-\frac{33-3\sqrt{69}}{13}\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына \frac{33+3\sqrt{69}}{13} санын, ал x_{2} мәнінің орнына \frac{33-3\sqrt{69}}{13} санын қойыңыз.