x мәнін табыңыз
x=-\frac{3}{4}=-0.75
x=1
Граф
Викторина
Polynomial
0 = 4 x ^ { 2 } - x - 3
Ортақ пайдалану
Алмасу буферіне көшірілген
4x^{2}-x-3=0
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
a+b=-1 ab=4\left(-3\right)=-12
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 4x^{2}+ax+bx-3 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-12 2,-6 3,-4
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -12 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-12=-11 2-6=-4 3-4=-1
Әр жұптың қосындысын есептеңіз.
a=-4 b=3
Шешім — бұл -1 қосындысын беретін жұп.
\left(4x^{2}-4x\right)+\left(3x-3\right)
4x^{2}-x-3 мәнін \left(4x^{2}-4x\right)+\left(3x-3\right) ретінде қайта жазыңыз.
4x\left(x-1\right)+3\left(x-1\right)
Бірінші топтағы 4x ортақ көбейткішін және екінші топтағы 3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-1\right)\left(4x+3\right)
Үлестіру сипаты арқылы x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
x=1 x=-\frac{3}{4}
Теңдеулердің шешімін табу үшін, x-1=0 және 4x+3=0 теңдіктерін шешіңіз.
4x^{2}-x-3=0
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 4 санын a мәніне, -1 санын b мәніне және -3 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
-4 санын 4 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
-16 санын -3 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
1 санын 48 санына қосу.
x=\frac{-\left(-1\right)±7}{2\times 4}
49 санының квадраттық түбірін шығарыңыз.
x=\frac{1±7}{2\times 4}
-1 санына қарама-қарсы сан 1 мәніне тең.
x=\frac{1±7}{8}
2 санын 4 санына көбейтіңіз.
x=\frac{8}{8}
Енді ± плюс болған кездегі x=\frac{1±7}{8} теңдеуін шешіңіз. 1 санын 7 санына қосу.
x=1
8 санын 8 санына бөліңіз.
x=-\frac{6}{8}
Енді ± минус болған кездегі x=\frac{1±7}{8} теңдеуін шешіңіз. 7 мәнінен 1 мәнін алу.
x=-\frac{3}{4}
2 мәнін шегеру және алу арқылы \frac{-6}{8} үлесін ең аз мәнге азайтыңыз.
x=1 x=-\frac{3}{4}
Теңдеу енді шешілді.
4x^{2}-x-3=0
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
4x^{2}-x=3
Екі жағына 3 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
\frac{4x^{2}-x}{4}=\frac{3}{4}
Екі жағын да 4 санына бөліңіз.
x^{2}-\frac{1}{4}x=\frac{3}{4}
4 санына бөлген кезде 4 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{8}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{1}{4} санын 2 мәніне бөлсеңіз, -\frac{1}{8} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{8} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{3}{4}+\frac{1}{64}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{8} бөлшегінің квадратын табыңыз.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{49}{64}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{3}{4} бөлшегіне \frac{1}{64} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x-\frac{1}{8}\right)^{2}=\frac{49}{64}
x^{2}-\frac{1}{4}x+\frac{1}{64} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{8}=\frac{7}{8} x-\frac{1}{8}=-\frac{7}{8}
Қысқартыңыз.
x=1 x=-\frac{3}{4}
Теңдеудің екі жағына да \frac{1}{8} санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}