Көбейткіштерге жіктеу
\left(1-x\right)\left(x-1\right)\left(x+2\right)
Есептеу
-x^{3}+3x-2
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
\left(x+2\right)\left(-x^{2}+2x-1\right)
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі -2 бос мүшесін, ал q өрнегі -1 бас коэффициентін бөледі. Сондай түбірдің бірі — -2. Көпмүшені x+2 мәніне бөлу арқылы көбейткішпен жіктеңіз.
a+b=2 ab=-\left(-1\right)=1
-x^{2}+2x-1 өрнегін қарастырыңыз. Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек -x^{2}+ax+bx-1 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=1 b=1
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(-x^{2}+x\right)+\left(x-1\right)
-x^{2}+2x-1 мәнін \left(-x^{2}+x\right)+\left(x-1\right) ретінде қайта жазыңыз.
-x\left(x-1\right)+x-1
-x^{2}+x өрнегіндегі -x ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x-1\right)\left(-x+1\right)
Үлестіру сипаты арқылы x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x-1\right)\left(-x+1\right)\left(x+2\right)
Толық көбейткішке жіктелген өрнекті қайта жазыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}