Көбейткіштерге жіктеу
-\left(a-3\right)\left(a+2\right)
Есептеу
-\left(a-3\right)\left(a+2\right)
Викторина
Polynomial
- a ^ { 2 } + a + 6 =
Ортақ пайдалану
Алмасу буферіне көшірілген
p+q=1 pq=-6=-6
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек -a^{2}+pa+qa+6 ретінде қайта жазылуы керек. p және q мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,6 -2,3
pq теріс болғандықтан, p және q белгілері теріс болады. p+q мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+6=5 -2+3=1
Әр жұптың қосындысын есептеңіз.
p=3 q=-2
Шешім — бұл 1 қосындысын беретін жұп.
\left(-a^{2}+3a\right)+\left(-2a+6\right)
-a^{2}+a+6 мәнін \left(-a^{2}+3a\right)+\left(-2a+6\right) ретінде қайта жазыңыз.
-a\left(a-3\right)-2\left(a-3\right)
Бірінші топтағы -a ортақ көбейткішін және екінші топтағы -2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(a-3\right)\left(-a-2\right)
Үлестіру сипаты арқылы a-3 ортақ көбейткішін жақша сыртына шығарыңыз.
-a^{2}+a+6=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
a=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
a=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
1 санының квадратын шығарыңыз.
a=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
-4 санын -1 санына көбейтіңіз.
a=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
4 санын 6 санына көбейтіңіз.
a=\frac{-1±\sqrt{25}}{2\left(-1\right)}
1 санын 24 санына қосу.
a=\frac{-1±5}{2\left(-1\right)}
25 санының квадраттық түбірін шығарыңыз.
a=\frac{-1±5}{-2}
2 санын -1 санына көбейтіңіз.
a=\frac{4}{-2}
Енді ± плюс болған кездегі a=\frac{-1±5}{-2} теңдеуін шешіңіз. -1 санын 5 санына қосу.
a=-2
4 санын -2 санына бөліңіз.
a=-\frac{6}{-2}
Енді ± минус болған кездегі a=\frac{-1±5}{-2} теңдеуін шешіңіз. 5 мәнінен -1 мәнін алу.
a=3
-6 санын -2 санына бөліңіз.
-a^{2}+a+6=-\left(a-\left(-2\right)\right)\left(a-3\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -2 санын, ал x_{2} мәнінің орнына 3 санын қойыңыз.
-a^{2}+a+6=-\left(a+2\right)\left(a-3\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}