Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
x айнымалы мәні -1,0 мәндерінің ешқайсысына тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да x\left(x+1\right) санына көбейтіңіз. Ең кіші ортақ бөлім: x+1,x.
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
x+1 мәнін 3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-x\times 4-3x-3=-2x\left(x+1\right)
3x+3 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
-x\times 4-3x-3=-2x^{2}-2x
-2x мәнін x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-x\times 4-3x-3+2x^{2}=-2x
Екі жағына 2x^{2} қосу.
-x\times 4-3x-3+2x^{2}+2x=0
Екі жағына 2x қосу.
-x\times 4-x-3+2x^{2}=0
-3x және 2x мәндерін қоссаңыз, -x мәні шығады.
-4x-x-3+2x^{2}=0
-4 шығару үшін, -1 және 4 сандарын көбейтіңіз.
-5x-3+2x^{2}=0
-4x және -x мәндерін қоссаңыз, -5x мәні шығады.
2x^{2}-5x-3=0
Көпмүшені стандартты пішінге келтіру үшін, оны қайта реттеңіз. Бос мүшелерді ең жоғарғысынан ең төменгі дәреже көрсеткішіне дейінгі ретпен орналастырыңыз.
a+b=-5 ab=2\left(-3\right)=-6
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 2x^{2}+ax+bx-3 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,-6 2,-3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1-6=-5 2-3=-1
Әр жұптың қосындысын есептеңіз.
a=-6 b=1
Шешім — бұл -5 қосындысын беретін жұп.
\left(2x^{2}-6x\right)+\left(x-3\right)
2x^{2}-5x-3 мәнін \left(2x^{2}-6x\right)+\left(x-3\right) ретінде қайта жазыңыз.
2x\left(x-3\right)+x-3
2x^{2}-6x өрнегіндегі 2x ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x-3\right)\left(2x+1\right)
Үлестіру сипаты арқылы x-3 ортақ көбейткішін жақша сыртына шығарыңыз.
x=3 x=-\frac{1}{2}
Теңдеулердің шешімін табу үшін, x-3=0 және 2x+1=0 теңдіктерін шешіңіз.
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
x айнымалы мәні -1,0 мәндерінің ешқайсысына тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да x\left(x+1\right) санына көбейтіңіз. Ең кіші ортақ бөлім: x+1,x.
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
x+1 мәнін 3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-x\times 4-3x-3=-2x\left(x+1\right)
3x+3 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
-x\times 4-3x-3=-2x^{2}-2x
-2x мәнін x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-x\times 4-3x-3+2x^{2}=-2x
Екі жағына 2x^{2} қосу.
-x\times 4-3x-3+2x^{2}+2x=0
Екі жағына 2x қосу.
-x\times 4-x-3+2x^{2}=0
-3x және 2x мәндерін қоссаңыз, -x мәні шығады.
-4x-x-3+2x^{2}=0
-4 шығару үшін, -1 және 4 сандарын көбейтіңіз.
-5x-3+2x^{2}=0
-4x және -x мәндерін қоссаңыз, -5x мәні шығады.
2x^{2}-5x-3=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 2 санын a мәніне, -5 санын b мәніне және -3 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
-5 санының квадратын шығарыңыз.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
-4 санын 2 санына көбейтіңіз.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
-8 санын -3 санына көбейтіңіз.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
25 санын 24 санына қосу.
x=\frac{-\left(-5\right)±7}{2\times 2}
49 санының квадраттық түбірін шығарыңыз.
x=\frac{5±7}{2\times 2}
-5 санына қарама-қарсы сан 5 мәніне тең.
x=\frac{5±7}{4}
2 санын 2 санына көбейтіңіз.
x=\frac{12}{4}
Енді ± плюс болған кездегі x=\frac{5±7}{4} теңдеуін шешіңіз. 5 санын 7 санына қосу.
x=3
12 санын 4 санына бөліңіз.
x=-\frac{2}{4}
Енді ± минус болған кездегі x=\frac{5±7}{4} теңдеуін шешіңіз. 7 мәнінен 5 мәнін алу.
x=-\frac{1}{2}
2 мәнін шегеру және алу арқылы \frac{-2}{4} үлесін ең аз мәнге азайтыңыз.
x=3 x=-\frac{1}{2}
Теңдеу енді шешілді.
-x\times 4-\left(x+1\right)\times 3=-2x\left(x+1\right)
x айнымалы мәні -1,0 мәндерінің ешқайсысына тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да x\left(x+1\right) санына көбейтіңіз. Ең кіші ортақ бөлім: x+1,x.
-x\times 4-\left(3x+3\right)=-2x\left(x+1\right)
x+1 мәнін 3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-x\times 4-3x-3=-2x\left(x+1\right)
3x+3 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
-x\times 4-3x-3=-2x^{2}-2x
-2x мәнін x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-x\times 4-3x-3+2x^{2}=-2x
Екі жағына 2x^{2} қосу.
-x\times 4-3x-3+2x^{2}+2x=0
Екі жағына 2x қосу.
-x\times 4-x-3+2x^{2}=0
-3x және 2x мәндерін қоссаңыз, -x мәні шығады.
-x\times 4-x+2x^{2}=3
Екі жағына 3 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
-4x-x+2x^{2}=3
-4 шығару үшін, -1 және 4 сандарын көбейтіңіз.
-5x+2x^{2}=3
-4x және -x мәндерін қоссаңыз, -5x мәні шығады.
2x^{2}-5x=3
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Екі жағын да 2 санына бөліңіз.
x^{2}-\frac{5}{2}x=\frac{3}{2}
2 санына бөлген кезде 2 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{5}{2} санын 2 мәніне бөлсеңіз, -\frac{5}{4} саны шығады. Содан соң, теңдеудің екі жағына -\frac{5}{4} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{5}{4} бөлшегінің квадратын табыңыз.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{3}{2} бөлшегіне \frac{25}{16} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
x^{2}-\frac{5}{2}x+\frac{25}{16} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Қысқартыңыз.
x=3 x=-\frac{1}{2}
Теңдеудің екі жағына да \frac{5}{4} санын қосыңыз.