x мәнін табыңыз
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
\left(2x+3\right)^{2}=24x
\left(2x+3\right)^{2} шығару үшін, 2x+3 және 2x+3 сандарын көбейтіңіз.
4x^{2}+12x+9=24x
\left(2x+3\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}+12x+9-24x=0
Екі жағынан да 24x мәнін қысқартыңыз.
4x^{2}-12x+9=0
12x және -24x мәндерін қоссаңыз, -12x мәні шығады.
a+b=-12 ab=4\times 9=36
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 4x^{2}+ax+bx+9 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 36 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Әр жұптың қосындысын есептеңіз.
a=-6 b=-6
Шешім — бұл -12 қосындысын беретін жұп.
\left(4x^{2}-6x\right)+\left(-6x+9\right)
4x^{2}-12x+9 мәнін \left(4x^{2}-6x\right)+\left(-6x+9\right) ретінде қайта жазыңыз.
2x\left(2x-3\right)-3\left(2x-3\right)
Бірінші топтағы 2x ортақ көбейткішін және екінші топтағы -3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(2x-3\right)\left(2x-3\right)
Үлестіру сипаты арқылы 2x-3 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(2x-3\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
x=\frac{3}{2}
Теңдеудің шешімін табу үшін, 2x-3=0 теңдігін шешіңіз.
\left(2x+3\right)^{2}=24x
\left(2x+3\right)^{2} шығару үшін, 2x+3 және 2x+3 сандарын көбейтіңіз.
4x^{2}+12x+9=24x
\left(2x+3\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}+12x+9-24x=0
Екі жағынан да 24x мәнін қысқартыңыз.
4x^{2}-12x+9=0
12x және -24x мәндерін қоссаңыз, -12x мәні шығады.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 4 санын a мәніне, -12 санын b мәніне және 9 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
-12 санының квадратын шығарыңыз.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
-4 санын 4 санына көбейтіңіз.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
-16 санын 9 санына көбейтіңіз.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
144 санын -144 санына қосу.
x=-\frac{-12}{2\times 4}
0 санының квадраттық түбірін шығарыңыз.
x=\frac{12}{2\times 4}
-12 санына қарама-қарсы сан 12 мәніне тең.
x=\frac{12}{8}
2 санын 4 санына көбейтіңіз.
x=\frac{3}{2}
4 мәнін шегеру және алу арқылы \frac{12}{8} үлесін ең аз мәнге азайтыңыз.
\left(2x+3\right)^{2}=24x
\left(2x+3\right)^{2} шығару үшін, 2x+3 және 2x+3 сандарын көбейтіңіз.
4x^{2}+12x+9=24x
\left(2x+3\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
4x^{2}+12x+9-24x=0
Екі жағынан да 24x мәнін қысқартыңыз.
4x^{2}-12x+9=0
12x және -24x мәндерін қоссаңыз, -12x мәні шығады.
4x^{2}-12x=-9
Екі жағынан да 9 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
Екі жағын да 4 санына бөліңіз.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
4 санына бөлген кезде 4 санына көбейту әрекетінің күшін жояды.
x^{2}-3x=-\frac{9}{4}
-12 санын 4 санына бөліңіз.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -3 санын 2 мәніне бөлсеңіз, -\frac{3}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{3}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{3}{2} бөлшегінің квадратын табыңыз.
x^{2}-3x+\frac{9}{4}=0
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{9}{4} бөлшегіне \frac{9}{4} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x-\frac{3}{2}\right)^{2}=0
x^{2}-3x+\frac{9}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
Қысқартыңыз.
x=\frac{3}{2} x=\frac{3}{2}
Теңдеудің екі жағына да \frac{3}{2} санын қосыңыз.
x=\frac{3}{2}
Теңдеу енді шешілді. Шешімдері бірдей.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}