Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}-8x+16-9=0
\left(x-4\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-8x+7=0
7 мәнін алу үшін, 16 мәнінен 9 мәнін алып тастаңыз.
a+b=-8 ab=7
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}-8x+7 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-7 b=-1
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x-7\right)\left(x-1\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=7 x=1
Теңдеулердің шешімін табу үшін, x-7=0 және x-1=0 теңдіктерін шешіңіз.
x^{2}-8x+16-9=0
\left(x-4\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-8x+7=0
7 мәнін алу үшін, 16 мәнінен 9 мәнін алып тастаңыз.
a+b=-8 ab=1\times 7=7
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx+7 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-7 b=-1
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x^{2}-7x\right)+\left(-x+7\right)
x^{2}-8x+7 мәнін \left(x^{2}-7x\right)+\left(-x+7\right) ретінде қайта жазыңыз.
x\left(x-7\right)-\left(x-7\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы -1 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-7\right)\left(x-1\right)
Үлестіру сипаты арқылы x-7 ортақ көбейткішін жақша сыртына шығарыңыз.
x=7 x=1
Теңдеулердің шешімін табу үшін, x-7=0 және x-1=0 теңдіктерін шешіңіз.
x^{2}-8x+16-9=0
\left(x-4\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-8x+7=0
7 мәнін алу үшін, 16 мәнінен 9 мәнін алып тастаңыз.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -8 санын b мәніне және 7 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8 санының квадратын шығарыңыз.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
-4 санын 7 санына көбейтіңіз.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
64 санын -28 санына қосу.
x=\frac{-\left(-8\right)±6}{2}
36 санының квадраттық түбірін шығарыңыз.
x=\frac{8±6}{2}
-8 санына қарама-қарсы сан 8 мәніне тең.
x=\frac{14}{2}
Енді ± плюс болған кездегі x=\frac{8±6}{2} теңдеуін шешіңіз. 8 санын 6 санына қосу.
x=7
14 санын 2 санына бөліңіз.
x=\frac{2}{2}
Енді ± минус болған кездегі x=\frac{8±6}{2} теңдеуін шешіңіз. 6 мәнінен 8 мәнін алу.
x=1
2 санын 2 санына бөліңіз.
x=7 x=1
Теңдеу енді шешілді.
x^{2}-8x+16-9=0
\left(x-4\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-8x+7=0
7 мәнін алу үшін, 16 мәнінен 9 мәнін алып тастаңыз.
x^{2}-8x=-7
Екі жағынан да 7 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -8 санын 2 мәніне бөлсеңіз, -4 саны шығады. Содан соң, теңдеудің екі жағына -4 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-8x+16=-7+16
-4 санының квадратын шығарыңыз.
x^{2}-8x+16=9
-7 санын 16 санына қосу.
\left(x-4\right)^{2}=9
x^{2}-8x+16 көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-4=3 x-4=-3
Қысқартыңыз.
x=7 x=1
Теңдеудің екі жағына да 4 санын қосыңыз.