x мәнін табыңыз
x=5
x=-1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x^{2}-4x+4=9
\left(x-2\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-4x+4-9=0
Екі жағынан да 9 мәнін қысқартыңыз.
x^{2}-4x-5=0
-5 мәнін алу үшін, 4 мәнінен 9 мәнін алып тастаңыз.
a+b=-4 ab=-5
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}-4x-5 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-5 b=1
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x-5\right)\left(x+1\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=5 x=-1
Теңдеулердің шешімін табу үшін, x-5=0 және x+1=0 теңдіктерін шешіңіз.
x^{2}-4x+4=9
\left(x-2\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-4x+4-9=0
Екі жағынан да 9 мәнін қысқартыңыз.
x^{2}-4x-5=0
-5 мәнін алу үшін, 4 мәнінен 9 мәнін алып тастаңыз.
a+b=-4 ab=1\left(-5\right)=-5
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx-5 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-5 b=1
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні теріс болғандықтан, теріс санның абсолютті мәні оң санға қарағанда үлкенірек болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x^{2}-5x\right)+\left(x-5\right)
x^{2}-4x-5 мәнін \left(x^{2}-5x\right)+\left(x-5\right) ретінде қайта жазыңыз.
x\left(x-5\right)+x-5
x^{2}-5x өрнегіндегі x ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x-5\right)\left(x+1\right)
Үлестіру сипаты арқылы x-5 ортақ көбейткішін жақша сыртына шығарыңыз.
x=5 x=-1
Теңдеулердің шешімін табу үшін, x-5=0 және x+1=0 теңдіктерін шешіңіз.
x^{2}-4x+4=9
\left(x-2\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-4x+4-9=0
Екі жағынан да 9 мәнін қысқартыңыз.
x^{2}-4x-5=0
-5 мәнін алу үшін, 4 мәнінен 9 мәнін алып тастаңыз.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -4 санын b мәніне және -5 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
-4 санының квадратын шығарыңыз.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4 санын -5 санына көбейтіңіз.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
16 санын 20 санына қосу.
x=\frac{-\left(-4\right)±6}{2}
36 санының квадраттық түбірін шығарыңыз.
x=\frac{4±6}{2}
-4 санына қарама-қарсы сан 4 мәніне тең.
x=\frac{10}{2}
Енді ± плюс болған кездегі x=\frac{4±6}{2} теңдеуін шешіңіз. 4 санын 6 санына қосу.
x=5
10 санын 2 санына бөліңіз.
x=-\frac{2}{2}
Енді ± минус болған кездегі x=\frac{4±6}{2} теңдеуін шешіңіз. 6 мәнінен 4 мәнін алу.
x=-1
-2 санын 2 санына бөліңіз.
x=5 x=-1
Теңдеу енді шешілді.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-2=3 x-2=-3
Қысқартыңыз.
x=5 x=-1
Теңдеудің екі жағына да 2 санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}