Есептеу
\left(x-2\right)\left(x+4\right)
Жаю
x^{2}+2x-8
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)-22
\left(x-1\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)-22
\left(x+2\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)-22
x^{2} және x^{2} мәндерін қоссаңыз, 2x^{2} мәні шығады.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)-22
-2x және 4x мәндерін қоссаңыз, 2x мәні шығады.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)-22
5 мәнін алу үшін, 1 және 4 мәндерін қосыңыз.
2x^{2}+2x+5-\left(x^{2}-9\right)-22
\left(x-3\right)\left(x+3\right) өрнегін қарастырыңыз. Көбейтуді мына ереженің көмегімен квадраттар айырмасына айналдыруға болады: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 санының квадратын шығарыңыз.
2x^{2}+2x+5-x^{2}+9-22
x^{2}-9 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
x^{2}+2x+5+9-22
2x^{2} және -x^{2} мәндерін қоссаңыз, x^{2} мәні шығады.
x^{2}+2x+14-22
14 мәнін алу үшін, 5 және 9 мәндерін қосыңыз.
x^{2}+2x-8
-8 мәнін алу үшін, 14 мәнінен 22 мәнін алып тастаңыз.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)-22
\left(x-1\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)-22
\left(x+2\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)-22
x^{2} және x^{2} мәндерін қоссаңыз, 2x^{2} мәні шығады.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)-22
-2x және 4x мәндерін қоссаңыз, 2x мәні шығады.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)-22
5 мәнін алу үшін, 1 және 4 мәндерін қосыңыз.
2x^{2}+2x+5-\left(x^{2}-9\right)-22
\left(x-3\right)\left(x+3\right) өрнегін қарастырыңыз. Көбейтуді мына ереженің көмегімен квадраттар айырмасына айналдыруға болады: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 3 санының квадратын шығарыңыз.
2x^{2}+2x+5-x^{2}+9-22
x^{2}-9 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
x^{2}+2x+5+9-22
2x^{2} және -x^{2} мәндерін қоссаңыз, x^{2} мәні шығады.
x^{2}+2x+14-22
14 мәнін алу үшін, 5 және 9 мәндерін қосыңыз.
x^{2}+2x-8
-8 мәнін алу үшін, 14 мәнінен 22 мәнін алып тастаңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}