x мәнін табыңыз
x = \frac{\sqrt{7} + 1}{3} \approx 1.215250437
x=\frac{1-\sqrt{7}}{3}\approx -0.54858377
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x-\frac{1}{3}=\frac{\sqrt{7}}{3} x-\frac{1}{3}=-\frac{\sqrt{7}}{3}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{3}-\left(-\frac{1}{3}\right)=\frac{\sqrt{7}}{3}-\left(-\frac{1}{3}\right) x-\frac{1}{3}-\left(-\frac{1}{3}\right)=-\frac{\sqrt{7}}{3}-\left(-\frac{1}{3}\right)
Теңдеудің екі жағына да \frac{1}{3} санын қосыңыз.
x=\frac{\sqrt{7}}{3}-\left(-\frac{1}{3}\right) x=-\frac{\sqrt{7}}{3}-\left(-\frac{1}{3}\right)
-\frac{1}{3} санынан осы санның өзін алып тастаған кезде 0 қалады.
x=\frac{\sqrt{7}+1}{3}
-\frac{1}{3} мәнінен \frac{\sqrt{7}}{3} мәнін алу.
x=\frac{1-\sqrt{7}}{3}
-\frac{1}{3} мәнінен -\frac{\sqrt{7}}{3} мәнін алу.
x=\frac{\sqrt{7}+1}{3} x=\frac{1-\sqrt{7}}{3}
Теңдеу енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}