Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=12 ab=1\times 36=36
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx+36 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,36 2,18 3,12 4,9 6,6
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 36 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Әр жұптың қосындысын есептеңіз.
a=6 b=6
Шешім — бұл 12 қосындысын беретін жұп.
\left(x^{2}+6x\right)+\left(6x+36\right)
x^{2}+12x+36 мәнін \left(x^{2}+6x\right)+\left(6x+36\right) ретінде қайта жазыңыз.
x\left(x+6\right)+6\left(x+6\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 6 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x+6\right)\left(x+6\right)
Үлестіру сипаты арқылы x+6 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x+6\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
factor(x^{2}+12x+36)
Үшмүшеде ортақ көбейткішке көбейтілуі мүмкін үшмүше квадратының формуласы бар. Үшмүше квадраттардың көбейткіштерін бас және соңғы мүшелерінің квадрат түбірлерін табу арқылы жіктеуге болады.
\sqrt{36}=6
Соңғы мүшенің квадрат түбірін табыңыз, 36.
\left(x+6\right)^{2}
Үшмүше квадраты қосмүше квадратына тең, яғни, үшмүше квадратының ортаңғы мүше белгісімен анықталған белгісі бар бас және соңғы мүшелердің квадрат түбірлерінің қосындысы немесе айырмасы.
x^{2}+12x+36=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
12 санының квадратын шығарыңыз.
x=\frac{-12±\sqrt{144-144}}{2}
-4 санын 36 санына көбейтіңіз.
x=\frac{-12±\sqrt{0}}{2}
144 санын -144 санына қосу.
x=\frac{-12±0}{2}
0 санының квадраттық түбірін шығарыңыз.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -6 санын, ал x_{2} мәнінің орнына -6 санын қойыңыз.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.