Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}+2x+1=x\left(2x+1\right)
\left(x+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}+2x+1=2x^{2}+x
x мәнін 2x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x^{2}+2x+1-2x^{2}=x
Екі жағынан да 2x^{2} мәнін қысқартыңыз.
-x^{2}+2x+1=x
x^{2} және -2x^{2} мәндерін қоссаңыз, -x^{2} мәні шығады.
-x^{2}+2x+1-x=0
Екі жағынан да x мәнін қысқартыңыз.
-x^{2}+x+1=0
2x және -x мәндерін қоссаңыз, x мәні шығады.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде -1 санын a мәніне, 1 санын b мәніне және 1 санын c мәніне ауыстырыңыз.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
1 санының квадратын шығарыңыз.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
-4 санын -1 санына көбейтіңіз.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
1 санын 4 санына қосу.
x=\frac{-1±\sqrt{5}}{-2}
2 санын -1 санына көбейтіңіз.
x=\frac{\sqrt{5}-1}{-2}
Енді ± плюс болған кездегі x=\frac{-1±\sqrt{5}}{-2} теңдеуін шешіңіз. -1 санын \sqrt{5} санына қосу.
x=\frac{1-\sqrt{5}}{2}
-1+\sqrt{5} санын -2 санына бөліңіз.
x=\frac{-\sqrt{5}-1}{-2}
Енді ± минус болған кездегі x=\frac{-1±\sqrt{5}}{-2} теңдеуін шешіңіз. \sqrt{5} мәнінен -1 мәнін алу.
x=\frac{\sqrt{5}+1}{2}
-1-\sqrt{5} санын -2 санына бөліңіз.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
Теңдеу енді шешілді.
x^{2}+2x+1=x\left(2x+1\right)
\left(x+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
x^{2}+2x+1=2x^{2}+x
x мәнін 2x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x^{2}+2x+1-2x^{2}=x
Екі жағынан да 2x^{2} мәнін қысқартыңыз.
-x^{2}+2x+1=x
x^{2} және -2x^{2} мәндерін қоссаңыз, -x^{2} мәні шығады.
-x^{2}+2x+1-x=0
Екі жағынан да x мәнін қысқартыңыз.
-x^{2}+x+1=0
2x және -x мәндерін қоссаңыз, x мәні шығады.
-x^{2}+x=-1
Екі жағынан да 1 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
Екі жағын да -1 санына бөліңіз.
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
-1 санына бөлген кезде -1 санына көбейту әрекетінің күшін жояды.
x^{2}-x=-\frac{1}{-1}
1 санын -1 санына бөліңіз.
x^{2}-x=1
-1 санын -1 санына бөліңіз.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -1 санын 2 мәніне бөлсеңіз, -\frac{1}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{2} бөлшегінің квадратын табыңыз.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
1 санын \frac{1}{4} санына қосу.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
x^{2}-x+\frac{1}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Қысқартыңыз.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Теңдеудің екі жағына да \frac{1}{2} санын қосыңыз.