Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
Жаю
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
\left(a-2b\right)^{2} формуласын жіктеу үшін \left(p-q\right)^{2}=p^{2}-2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
\left(a+2b\right)^{2} формуласын жіктеу үшін \left(p+q\right)^{2}=p^{2}+2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
a^{2}-4ab+4b^{2} мәнін a^{2}+4ab+4b^{2} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
\left(a^{2}+4b^{2}\right)^{2} формуласын жіктеу үшін \left(p+q\right)^{2}=p^{2}+2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
a^{4}+8a^{2}b^{2}+16b^{4} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
a^{4} және -a^{4} мәндерін қоссаңыз, 0 мәні шығады.
-16a^{2}b^{2}+16b^{4}-16b^{4}
-8a^{2}b^{2} және -8a^{2}b^{2} мәндерін қоссаңыз, -16a^{2}b^{2} мәні шығады.
-16a^{2}b^{2}
16b^{4} және -16b^{4} мәндерін қоссаңыз, 0 мәні шығады.
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
\left(a-2b\right)^{2} формуласын жіктеу үшін \left(p-q\right)^{2}=p^{2}-2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
\left(a+2b\right)^{2} формуласын жіктеу үшін \left(p+q\right)^{2}=p^{2}+2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
a^{2}-4ab+4b^{2} мәнін a^{2}+4ab+4b^{2} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
\left(a^{2}+4b^{2}\right)^{2} формуласын жіктеу үшін \left(p+q\right)^{2}=p^{2}+2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
a^{4}+8a^{2}b^{2}+16b^{4} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
a^{4} және -a^{4} мәндерін қоссаңыз, 0 мәні шығады.
-16a^{2}b^{2}+16b^{4}-16b^{4}
-8a^{2}b^{2} және -8a^{2}b^{2} мәндерін қоссаңыз, -16a^{2}b^{2} мәні шығады.
-16a^{2}b^{2}
16b^{4} және -16b^{4} мәндерін қоссаңыз, 0 мәні шығады.