Есептеу
-2+\frac{2}{9x^{2}}
Жаю
-2+\frac{2}{9x^{2}}
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 3x санын \frac{3x}{3x} санына көбейтіңіз.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
\frac{3x\times 3x}{3x} және \frac{1}{3x} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
3x\times 3x-1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
\frac{9x^{2}-1}{3x} дәрежесін арттыру үшін, алымы мен бөлімінің дәрежелерін арттырып, содан кейін бөліңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 3x санын \frac{3x}{3x} санына көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
\frac{3x\times 3x}{3x} және \frac{1}{3x} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
3x\times 3x+1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 3x санын \frac{3x}{3x} санына көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
\frac{3x\times 3x}{3x} және \frac{1}{3x} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
3x\times 3x-1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
\frac{9x^{2}+1}{3x} және \frac{9x^{2}-1}{3x} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
x^{2} шығару үшін, x және x сандарын көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
9 шығару үшін, 3 және 3 сандарын көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. "\left(3x\right)^{2}" жаю.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} және \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-18x^{2}+2}{9x^{2}}
Ұқсас мүшелерді 81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1 өрнегіне біріктіріңіз.
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 3x санын \frac{3x}{3x} санына көбейтіңіз.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
\frac{3x\times 3x}{3x} және \frac{1}{3x} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
3x\times 3x-1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
\frac{9x^{2}-1}{3x} дәрежесін арттыру үшін, алымы мен бөлімінің дәрежелерін арттырып, содан кейін бөліңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 3x санын \frac{3x}{3x} санына көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
\frac{3x\times 3x}{3x} және \frac{1}{3x} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
3x\times 3x+1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 3x санын \frac{3x}{3x} санына көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
\frac{3x\times 3x}{3x} және \frac{1}{3x} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
3x\times 3x-1 өрнегінде көбейту операциясын орындаңыз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
\frac{9x^{2}+1}{3x} және \frac{9x^{2}-1}{3x} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
x^{2} шығару үшін, x және x сандарын көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
9 шығару үшін, 3 және 3 сандарын көбейтіңіз.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. "\left(3x\right)^{2}" жаю.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} және \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-18x^{2}+2}{9x^{2}}
Ұқсас мүшелерді 81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1 өрнегіне біріктіріңіз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}