Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
a қатысты айыру
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

16^{-\frac{3}{4}}\left(a^{-4}\right)^{-\frac{3}{4}}
"\left(16a^{-4}\right)^{-\frac{3}{4}}" жаю.
16^{-\frac{3}{4}}a^{3}
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 3 көрсеткішін алу үшін, -4 және -\frac{3}{4} мәндерін көбейтіңіз.
\frac{1}{8}a^{3}
-\frac{3}{4} дәреже көрсеткішінің 16 мәнін есептеп, \frac{1}{8} мәнін алыңыз.
-\frac{3}{4}\times \left(16a^{-4}\right)^{-\frac{3}{4}-1}\frac{\mathrm{d}}{\mathrm{d}a}(16a^{-4})
Егер F мәні f\left(u\right) және u=g\left(x\right) тегіс функцияларының қосындысы, яғни, F\left(x\right)=f\left(g\left(x\right)\right) болса, онда F мәнінің туындысы x мәніне қатысты u мәнін g мәніне көбейткендегі f туындысына тең, яғни, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{3}{4}\times \left(16a^{-4}\right)^{-\frac{7}{4}}\left(-4\right)\times 16a^{-4-1}
Көпмүше туындысы оның бос мүшелерінің туындыларының қосындысына тең. Тұрақты мүшенің туындысы 0 мәніне тең. ax^{n} мәнінің туындысы nax^{n-1} мәніне тең.
48a^{-5}\times \left(16a^{-4}\right)^{-\frac{7}{4}}
Қысқартыңыз.