x мәнін табыңыз
x=-2
x=2
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
\left(2\times \frac{1}{x}\right)^{2}=1
\frac{1}{x} және \frac{1}{x} мәндерін қоссаңыз, 2\times \frac{1}{x} мәні шығады.
\left(\frac{2}{x}\right)^{2}=1
2\times \frac{1}{x} өрнегін бір бөлшек ретінде көрсету.
\frac{2^{2}}{x^{2}}=1
\frac{2}{x} дәрежесін арттыру үшін, алымы мен бөлімінің дәрежелерін арттырып, содан кейін бөліңіз.
\frac{4}{x^{2}}=1
2 дәреже көрсеткішінің 2 мәнін есептеп, 4 мәнін алыңыз.
4=x^{2}
x айнымалы мәні 0 мәніне тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да x^{2} мәніне көбейтіңіз.
x^{2}=4
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
x=2 x=-2
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
\left(2\times \frac{1}{x}\right)^{2}=1
\frac{1}{x} және \frac{1}{x} мәндерін қоссаңыз, 2\times \frac{1}{x} мәні шығады.
\left(\frac{2}{x}\right)^{2}=1
2\times \frac{1}{x} өрнегін бір бөлшек ретінде көрсету.
\frac{2^{2}}{x^{2}}=1
\frac{2}{x} дәрежесін арттыру үшін, алымы мен бөлімінің дәрежелерін арттырып, содан кейін бөліңіз.
\frac{4}{x^{2}}=1
2 дәреже көрсеткішінің 2 мәнін есептеп, 4 мәнін алыңыз.
\frac{4}{x^{2}}-1=0
Екі жағынан да 1 мәнін қысқартыңыз.
\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}=0
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 1 санын \frac{x^{2}}{x^{2}} санына көбейтіңіз.
\frac{4-x^{2}}{x^{2}}=0
\frac{4}{x^{2}} және \frac{x^{2}}{x^{2}} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
4-x^{2}=0
x айнымалы мәні 0 мәніне тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да x^{2} мәніне көбейтіңіз.
-x^{2}+4=0
Осыған ұқсас x^{2} бос мүшесі бар, бірақ x мүшесі жоқ квадраттық теңдеулерді \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадраттық теңдеу формуласын пайдалана отырып шешуге болады. Бұл үшін квадраттық теңдеуді стандартты ax^{2}+bx+c=0 формуласына келтіру қажет.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде -1 санын a мәніне, 0 санын b мәніне және 4 санын c мәніне ауыстырыңыз.
x=\frac{0±\sqrt{-4\left(-1\right)\times 4}}{2\left(-1\right)}
0 санының квадратын шығарыңыз.
x=\frac{0±\sqrt{4\times 4}}{2\left(-1\right)}
-4 санын -1 санына көбейтіңіз.
x=\frac{0±\sqrt{16}}{2\left(-1\right)}
4 санын 4 санына көбейтіңіз.
x=\frac{0±4}{2\left(-1\right)}
16 санының квадраттық түбірін шығарыңыз.
x=\frac{0±4}{-2}
2 санын -1 санына көбейтіңіз.
x=-2
Енді ± плюс болған кездегі x=\frac{0±4}{-2} теңдеуін шешіңіз. 4 санын -2 санына бөліңіз.
x=2
Енді ± минус болған кездегі x=\frac{0±4}{-2} теңдеуін шешіңіз. -4 санын -2 санына бөліңіз.
x=-2 x=2
Теңдеу енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}