Есептеу
-\frac{\left(8y-9\right)^{2}}{144}+\frac{x^{2}}{4}
Жаю
\frac{x^{2}}{4}-\frac{4y^{2}}{9}+y-\frac{9}{16}
Ортақ пайдалану
Алмасу буферіне көшірілген
\frac{1}{2}x\times \frac{1}{2}x+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Әрбір \frac{1}{2}x-\frac{2}{3}y+\frac{3}{4} мүшесін әрбір \frac{1}{2}x+\frac{2}{3}y-\frac{3}{4} мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
x^{2} шығару үшін, x және x сандарын көбейтіңіз.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
y^{2} шығару үшін, y және y сандарын көбейтіңіз.
\frac{1\times 1}{2\times 2}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2} және \frac{1}{2} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1\times 1}{2\times 2} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}+\frac{1\times 2}{2\times 3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2} және \frac{2}{3} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Алым мен бөлімде 2 мәнін қысқарту.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1\left(-3\right)}{2\times 4}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2} және -\frac{3}{4} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{-3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1\left(-3\right)}{2\times 4} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-3}{8} бөлшегіндегі теріс таңбаны алып тастап, оны -\frac{3}{8} түрінде қайта жазуға болады.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{3\times 2}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{2}{3} және \frac{1}{2} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{6}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-2}{3\times 2} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{1}{3}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
2 мәнін шегеру және алу арқылы \frac{-2}{6} үлесін ең аз мәнге азайтыңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{3}xy және -\frac{1}{3}yx мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-2\times 2}{3\times 3}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{2}{3} және \frac{2}{3} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-2\times 2}{3\times 3} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-4}{9} бөлшегіндегі теріс таңбаны алып тастап, оны -\frac{4}{9} түрінде қайта жазуға болады.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{-2\left(-3\right)}{3\times 4}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{2}{3} және -\frac{3}{4} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{6}{12}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-2\left(-3\right)}{3\times 4} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
6 мәнін шегеру және алу арқылы \frac{6}{12} үлесін ең аз мәнге азайтыңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 1}{4\times 2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{3}{4} және \frac{1}{2} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{8}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{3\times 1}{4\times 2} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{3}{8}x және \frac{3}{8}x мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 2}{4\times 3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{3}{4} және \frac{2}{3} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{2}{4}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Алым мен бөлімде 3 мәнін қысқарту.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{1}{2}y+\frac{3}{4}\left(-\frac{3}{4}\right)
2 мәнін шегеру және алу арқылы \frac{2}{4} үлесін ең аз мәнге азайтыңыз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2}y және \frac{1}{2}y мәндерін қоссаңыз, y мәні шығады.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3\left(-3\right)}{4\times 4}
\frac{3}{4} және -\frac{3}{4} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{-9}{16}
\frac{3\left(-3\right)}{4\times 4} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y-\frac{9}{16}
\frac{-9}{16} бөлшегіндегі теріс таңбаны алып тастап, оны -\frac{9}{16} түрінде қайта жазуға болады.
\frac{1}{2}x\times \frac{1}{2}x+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Әрбір \frac{1}{2}x-\frac{2}{3}y+\frac{3}{4} мүшесін әрбір \frac{1}{2}x+\frac{2}{3}y-\frac{3}{4} мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y\times \frac{2}{3}y-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
x^{2} шығару үшін, x және x сандарын көбейтіңіз.
\frac{1}{2}x^{2}\times \frac{1}{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
y^{2} шығару үшін, y және y сандарын көбейтіңіз.
\frac{1\times 1}{2\times 2}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2} және \frac{1}{2} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{2}x\times \frac{2}{3}y+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1\times 1}{2\times 2} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}+\frac{1\times 2}{2\times 3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2} және \frac{2}{3} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1}{2}x\left(-\frac{3}{4}\right)-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Алым мен бөлімде 2 мәнін қысқарту.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{1\left(-3\right)}{2\times 4}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2} және -\frac{3}{4} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{3}xy+\frac{-3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1\left(-3\right)}{2\times 4} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{2}{3}y\times \frac{1}{2}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-3}{8} бөлшегіндегі теріс таңбаны алып тастап, оны -\frac{3}{8} түрінде қайта жазуға болады.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{3\times 2}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{2}{3} және \frac{1}{2} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x+\frac{-2}{6}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-2}{3\times 2} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}+\frac{1}{3}xy-\frac{3}{8}x-\frac{1}{3}yx-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
2 мәнін шегеру және алу арқылы \frac{-2}{6} үлесін ең аз мәнге азайтыңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{2}{3}y^{2}\times \frac{2}{3}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{3}xy және -\frac{1}{3}yx мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-2\times 2}{3\times 3}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{2}{3} және \frac{2}{3} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{3}{8}x+\frac{-4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-2\times 2}{3\times 3} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}-\frac{2}{3}y\left(-\frac{3}{4}\right)+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-4}{9} бөлшегіндегі теріс таңбаны алып тастап, оны -\frac{4}{9} түрінде қайта жазуға болады.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{-2\left(-3\right)}{3\times 4}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{2}{3} және -\frac{3}{4} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{6}{12}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{-2\left(-3\right)}{3\times 4} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{1}{2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
6 мәнін шегеру және алу арқылы \frac{6}{12} үлесін ең аз мәнге азайтыңыз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 1}{4\times 2}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{3}{4} және \frac{1}{2} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{3}{8}x-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{8}x+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{3\times 1}{4\times 2} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3}{4}\times \frac{2}{3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
-\frac{3}{8}x және \frac{3}{8}x мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{3\times 2}{4\times 3}y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{3}{4} және \frac{2}{3} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{2}{4}y+\frac{3}{4}\left(-\frac{3}{4}\right)
Алым мен бөлімде 3 мәнін қысқарту.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+\frac{1}{2}y+\frac{1}{2}y+\frac{3}{4}\left(-\frac{3}{4}\right)
2 мәнін шегеру және алу арқылы \frac{2}{4} үлесін ең аз мәнге азайтыңыз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3}{4}\left(-\frac{3}{4}\right)
\frac{1}{2}y және \frac{1}{2}y мәндерін қоссаңыз, y мәні шығады.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{3\left(-3\right)}{4\times 4}
\frac{3}{4} және -\frac{3}{4} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y+\frac{-9}{16}
\frac{3\left(-3\right)}{4\times 4} бөлшегінде көбейту операцияларын орындаңыз.
\frac{1}{4}x^{2}-\frac{4}{9}y^{2}+y-\frac{9}{16}
\frac{-9}{16} бөлшегіндегі теріс таңбаны алып тастап, оны -\frac{9}{16} түрінде қайта жазуға болады.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}