y мәнін табыңыз
y=-\sqrt{7}i\approx -0-2.645751311i
y=\sqrt{7}i\approx 2.645751311i
Ортақ пайдалану
Алмасу буферіне көшірілген
y=\sqrt{7}i y=-\sqrt{7}i
Теңдеу енді шешілді.
y^{2}+7=0
Екі жағына 7 қосу.
y=\frac{0±\sqrt{0^{2}-4\times 7}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, 0 санын b мәніне және 7 санын c мәніне ауыстырыңыз.
y=\frac{0±\sqrt{-4\times 7}}{2}
0 санының квадратын шығарыңыз.
y=\frac{0±\sqrt{-28}}{2}
-4 санын 7 санына көбейтіңіз.
y=\frac{0±2\sqrt{7}i}{2}
-28 санының квадраттық түбірін шығарыңыз.
y=\sqrt{7}i
Енді ± плюс болған кездегі y=\frac{0±2\sqrt{7}i}{2} теңдеуін шешіңіз.
y=-\sqrt{7}i
Енді ± минус болған кездегі y=\frac{0±2\sqrt{7}i}{2} теңдеуін шешіңіз.
y=\sqrt{7}i y=-\sqrt{7}i
Теңдеу енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}