Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}-25x-35=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-35\right)}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-35\right)}}{2}
-25 санының квадратын шығарыңыз.
x=\frac{-\left(-25\right)±\sqrt{625+140}}{2}
-4 санын -35 санына көбейтіңіз.
x=\frac{-\left(-25\right)±\sqrt{765}}{2}
625 санын 140 санына қосу.
x=\frac{-\left(-25\right)±3\sqrt{85}}{2}
765 санының квадраттық түбірін шығарыңыз.
x=\frac{25±3\sqrt{85}}{2}
-25 санына қарама-қарсы сан 25 мәніне тең.
x=\frac{3\sqrt{85}+25}{2}
Енді ± плюс болған кездегі x=\frac{25±3\sqrt{85}}{2} теңдеуін шешіңіз. 25 санын 3\sqrt{85} санына қосу.
x=\frac{25-3\sqrt{85}}{2}
Енді ± минус болған кездегі x=\frac{25±3\sqrt{85}}{2} теңдеуін шешіңіз. 3\sqrt{85} мәнінен 25 мәнін алу.
x^{2}-25x-35=\left(x-\frac{3\sqrt{85}+25}{2}\right)\left(x-\frac{25-3\sqrt{85}}{2}\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына \frac{25+3\sqrt{85}}{2} санын, ал x_{2} мәнінің орнына \frac{25-3\sqrt{85}}{2} санын қойыңыз.