Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=-14 ab=1\times 49=49
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx+49 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-49 -7,-7
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 49 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-49=-50 -7-7=-14
Әр жұптың қосындысын есептеңіз.
a=-7 b=-7
Шешім — бұл -14 қосындысын беретін жұп.
\left(x^{2}-7x\right)+\left(-7x+49\right)
x^{2}-14x+49 мәнін \left(x^{2}-7x\right)+\left(-7x+49\right) ретінде қайта жазыңыз.
x\left(x-7\right)-7\left(x-7\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы -7 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-7\right)\left(x-7\right)
Үлестіру сипаты арқылы x-7 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(x-7\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
factor(x^{2}-14x+49)
Үшмүшеде ортақ көбейткішке көбейтілуі мүмкін үшмүше квадратының формуласы бар. Үшмүше квадраттардың көбейткіштерін бас және соңғы мүшелерінің квадрат түбірлерін табу арқылы жіктеуге болады.
\sqrt{49}=7
Соңғы мүшенің квадрат түбірін табыңыз, 49.
\left(x-7\right)^{2}
Үшмүше квадраты қосмүше квадратына тең, яғни, үшмүше квадратының ортаңғы мүше белгісімен анықталған белгісі бар бас және соңғы мүшелердің квадрат түбірлерінің қосындысы немесе айырмасы.
x^{2}-14x+49=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2}
-14 санының квадратын шығарыңыз.
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2}
-4 санын 49 санына көбейтіңіз.
x=\frac{-\left(-14\right)±\sqrt{0}}{2}
196 санын -196 санына қосу.
x=\frac{-\left(-14\right)±0}{2}
0 санының квадраттық түбірін шығарыңыз.
x=\frac{14±0}{2}
-14 санына қарама-қарсы сан 14 мәніне тең.
x^{2}-14x+49=\left(x-7\right)\left(x-7\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 7 санын, ал x_{2} мәнінің орнына 7 санын қойыңыз.