Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=5 ab=1\left(-6\right)=-6
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx-6 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,6 -2,3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+6=5 -2+3=1
Әр жұптың қосындысын есептеңіз.
a=-1 b=6
Шешім — бұл 5 қосындысын беретін жұп.
\left(x^{2}-x\right)+\left(6x-6\right)
x^{2}+5x-6 мәнін \left(x^{2}-x\right)+\left(6x-6\right) ретінде қайта жазыңыз.
x\left(x-1\right)+6\left(x-1\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 6 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-1\right)\left(x+6\right)
Үлестіру сипаты арқылы x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
x^{2}+5x-6=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
5 санының квадратын шығарыңыз.
x=\frac{-5±\sqrt{25+24}}{2}
-4 санын -6 санына көбейтіңіз.
x=\frac{-5±\sqrt{49}}{2}
25 санын 24 санына қосу.
x=\frac{-5±7}{2}
49 санының квадраттық түбірін шығарыңыз.
x=\frac{2}{2}
Енді ± плюс болған кездегі x=\frac{-5±7}{2} теңдеуін шешіңіз. -5 санын 7 санына қосу.
x=1
2 санын 2 санына бөліңіз.
x=-\frac{12}{2}
Енді ± минус болған кездегі x=\frac{-5±7}{2} теңдеуін шешіңіз. 7 мәнінен -5 мәнін алу.
x=-6
-12 санын 2 санына бөліңіз.
x^{2}+5x-6=\left(x-1\right)\left(x-\left(-6\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 1 санын, ал x_{2} мәнінің орнына -6 санын қойыңыз.
x^{2}+5x-6=\left(x-1\right)\left(x+6\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.