Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=5 ab=1\left(-36\right)=-36
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx-36 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,36 -2,18 -3,12 -4,9 -6,6
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -36 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Әр жұптың қосындысын есептеңіз.
a=-4 b=9
Шешім — бұл 5 қосындысын беретін жұп.
\left(x^{2}-4x\right)+\left(9x-36\right)
x^{2}+5x-36 мәнін \left(x^{2}-4x\right)+\left(9x-36\right) ретінде қайта жазыңыз.
x\left(x-4\right)+9\left(x-4\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 9 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-4\right)\left(x+9\right)
Үлестіру сипаты арқылы x-4 ортақ көбейткішін жақша сыртына шығарыңыз.
x^{2}+5x-36=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
5 санының квадратын шығарыңыз.
x=\frac{-5±\sqrt{25+144}}{2}
-4 санын -36 санына көбейтіңіз.
x=\frac{-5±\sqrt{169}}{2}
25 санын 144 санына қосу.
x=\frac{-5±13}{2}
169 санының квадраттық түбірін шығарыңыз.
x=\frac{8}{2}
Енді ± плюс болған кездегі x=\frac{-5±13}{2} теңдеуін шешіңіз. -5 санын 13 санына қосу.
x=4
8 санын 2 санына бөліңіз.
x=-\frac{18}{2}
Енді ± минус болған кездегі x=\frac{-5±13}{2} теңдеуін шешіңіз. 13 мәнінен -5 мәнін алу.
x=-9
-18 санын 2 санына бөліңіз.
x^{2}+5x-36=\left(x-4\right)\left(x-\left(-9\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 4 санын, ал x_{2} мәнінің орнына -9 санын қойыңыз.
x^{2}+5x-36=\left(x-4\right)\left(x+9\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.