Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}+3x-5=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, 3 санын b мәніне және -5 санын c мәніне ауыстырыңыз.
x=\frac{-3±\sqrt{9-4\left(-5\right)}}{2}
3 санының квадратын шығарыңыз.
x=\frac{-3±\sqrt{9+20}}{2}
-4 санын -5 санына көбейтіңіз.
x=\frac{-3±\sqrt{29}}{2}
9 санын 20 санына қосу.
x=\frac{\sqrt{29}-3}{2}
Енді ± плюс болған кездегі x=\frac{-3±\sqrt{29}}{2} теңдеуін шешіңіз. -3 санын \sqrt{29} санына қосу.
x=\frac{-\sqrt{29}-3}{2}
Енді ± минус болған кездегі x=\frac{-3±\sqrt{29}}{2} теңдеуін шешіңіз. \sqrt{29} мәнінен -3 мәнін алу.
x=\frac{\sqrt{29}-3}{2} x=\frac{-\sqrt{29}-3}{2}
Теңдеу енді шешілді.
x^{2}+3x-5=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}+3x-5-\left(-5\right)=-\left(-5\right)
Теңдеудің екі жағына да 5 санын қосыңыз.
x^{2}+3x=-\left(-5\right)
-5 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}+3x=5
-5 мәнінен 0 мәнін алу.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=5+\left(\frac{3}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын 3 санын 2 мәніне бөлсеңіз, \frac{3}{2} саны шығады. Содан соң, теңдеудің екі жағына \frac{3}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+3x+\frac{9}{4}=5+\frac{9}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{3}{2} бөлшегінің квадратын табыңыз.
x^{2}+3x+\frac{9}{4}=\frac{29}{4}
5 санын \frac{9}{4} санына қосу.
\left(x+\frac{3}{2}\right)^{2}=\frac{29}{4}
x^{2}+3x+\frac{9}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{3}{2}=\frac{\sqrt{29}}{2} x+\frac{3}{2}=-\frac{\sqrt{29}}{2}
Қысқартыңыз.
x=\frac{\sqrt{29}-3}{2} x=\frac{-\sqrt{29}-3}{2}
Теңдеудің екі жағынан \frac{3}{2} санын алып тастаңыз.