Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=2 ab=-3
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}+2x-3 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-1 b=3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x-1\right)\left(x+3\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=1 x=-3
Теңдеулердің шешімін табу үшін, x-1=0 және x+3=0 теңдіктерін шешіңіз.
a+b=2 ab=1\left(-3\right)=-3
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx-3 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-1 b=3
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x^{2}-x\right)+\left(3x-3\right)
x^{2}+2x-3 мәнін \left(x^{2}-x\right)+\left(3x-3\right) ретінде қайта жазыңыз.
x\left(x-1\right)+3\left(x-1\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-1\right)\left(x+3\right)
Үлестіру сипаты арқылы x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
x=1 x=-3
Теңдеулердің шешімін табу үшін, x-1=0 және x+3=0 теңдіктерін шешіңіз.
x^{2}+2x-3=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, 2 санын b мәніне және -3 санын c мәніне ауыстырыңыз.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
2 санының квадратын шығарыңыз.
x=\frac{-2±\sqrt{4+12}}{2}
-4 санын -3 санына көбейтіңіз.
x=\frac{-2±\sqrt{16}}{2}
4 санын 12 санына қосу.
x=\frac{-2±4}{2}
16 санының квадраттық түбірін шығарыңыз.
x=\frac{2}{2}
Енді ± плюс болған кездегі x=\frac{-2±4}{2} теңдеуін шешіңіз. -2 санын 4 санына қосу.
x=1
2 санын 2 санына бөліңіз.
x=-\frac{6}{2}
Енді ± минус болған кездегі x=\frac{-2±4}{2} теңдеуін шешіңіз. 4 мәнінен -2 мәнін алу.
x=-3
-6 санын 2 санына бөліңіз.
x=1 x=-3
Теңдеу енді шешілді.
x^{2}+2x-3=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}+2x-3-\left(-3\right)=-\left(-3\right)
Теңдеудің екі жағына да 3 санын қосыңыз.
x^{2}+2x=-\left(-3\right)
-3 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}+2x=3
-3 мәнінен 0 мәнін алу.
x^{2}+2x+1^{2}=3+1^{2}
x бос мүшесінің коэффициенті болып табылатын 2 санын 2 мәніне бөлсеңіз, 1 саны шығады. Содан соң, теңдеудің екі жағына 1 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+2x+1=3+1
1 санының квадратын шығарыңыз.
x^{2}+2x+1=4
3 санын 1 санына қосу.
\left(x+1\right)^{2}=4
x^{2}+2x+1 формуласын көбейткіштерге жіктеңіз. Жалпы, x^{2}+bx+c мәні толық квадрат болғанда, оны әрқашан \left(x+\frac{b}{2}\right)^{2} ретінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+1=2 x+1=-2
Қысқартыңыз.
x=1 x=-3
Теңдеудің екі жағынан 1 санын алып тастаңыз.