Көбейткіштерге жіктеу
\left(x-2\right)\left(x+21\right)
Есептеу
\left(x-2\right)\left(x+21\right)
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
a+b=19 ab=1\left(-42\right)=-42
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx-42 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,42 -2,21 -3,14 -6,7
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -42 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Әр жұптың қосындысын есептеңіз.
a=-2 b=21
Шешім — бұл 19 қосындысын беретін жұп.
\left(x^{2}-2x\right)+\left(21x-42\right)
x^{2}+19x-42 мәнін \left(x^{2}-2x\right)+\left(21x-42\right) ретінде қайта жазыңыз.
x\left(x-2\right)+21\left(x-2\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 21 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-2\right)\left(x+21\right)
Үлестіру сипаты арқылы x-2 ортақ көбейткішін жақша сыртына шығарыңыз.
x^{2}+19x-42=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-19±\sqrt{19^{2}-4\left(-42\right)}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-19±\sqrt{361-4\left(-42\right)}}{2}
19 санының квадратын шығарыңыз.
x=\frac{-19±\sqrt{361+168}}{2}
-4 санын -42 санына көбейтіңіз.
x=\frac{-19±\sqrt{529}}{2}
361 санын 168 санына қосу.
x=\frac{-19±23}{2}
529 санының квадраттық түбірін шығарыңыз.
x=\frac{4}{2}
Енді ± плюс болған кездегі x=\frac{-19±23}{2} теңдеуін шешіңіз. -19 санын 23 санына қосу.
x=2
4 санын 2 санына бөліңіз.
x=-\frac{42}{2}
Енді ± минус болған кездегі x=\frac{-19±23}{2} теңдеуін шешіңіз. 23 мәнінен -19 мәнін алу.
x=-21
-42 санын 2 санына бөліңіз.
x^{2}+19x-42=\left(x-2\right)\left(x-\left(-21\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына 2 санын, ал x_{2} мәнінің орнына -21 санын қойыңыз.
x^{2}+19x-42=\left(x-2\right)\left(x+21\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}