x мәнін табыңыз
x=-13
x=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
a+b=12 ab=-13
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}+12x-13 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-1 b=13
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x-1\right)\left(x+13\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=1 x=-13
Теңдеулердің шешімін табу үшін, x-1=0 және x+13=0 теңдіктерін шешіңіз.
a+b=12 ab=1\left(-13\right)=-13
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx-13 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
a=-1 b=13
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Мұндай жалғыз жұп — бұл жүйе шешімі.
\left(x^{2}-x\right)+\left(13x-13\right)
x^{2}+12x-13 мәнін \left(x^{2}-x\right)+\left(13x-13\right) ретінде қайта жазыңыз.
x\left(x-1\right)+13\left(x-1\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 13 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-1\right)\left(x+13\right)
Үлестіру сипаты арқылы x-1 ортақ көбейткішін жақша сыртына шығарыңыз.
x=1 x=-13
Теңдеулердің шешімін табу үшін, x-1=0 және x+13=0 теңдіктерін шешіңіз.
x^{2}+12x-13=0
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-12±\sqrt{12^{2}-4\left(-13\right)}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, 12 санын b мәніне және -13 санын c мәніне ауыстырыңыз.
x=\frac{-12±\sqrt{144-4\left(-13\right)}}{2}
12 санының квадратын шығарыңыз.
x=\frac{-12±\sqrt{144+52}}{2}
-4 санын -13 санына көбейтіңіз.
x=\frac{-12±\sqrt{196}}{2}
144 санын 52 санына қосу.
x=\frac{-12±14}{2}
196 санының квадраттық түбірін шығарыңыз.
x=\frac{2}{2}
Енді ± плюс болған кездегі x=\frac{-12±14}{2} теңдеуін шешіңіз. -12 санын 14 санына қосу.
x=1
2 санын 2 санына бөліңіз.
x=-\frac{26}{2}
Енді ± минус болған кездегі x=\frac{-12±14}{2} теңдеуін шешіңіз. 14 мәнінен -12 мәнін алу.
x=-13
-26 санын 2 санына бөліңіз.
x=1 x=-13
Теңдеу енді шешілді.
x^{2}+12x-13=0
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
x^{2}+12x-13-\left(-13\right)=-\left(-13\right)
Теңдеудің екі жағына да 13 санын қосыңыз.
x^{2}+12x=-\left(-13\right)
-13 санынан осы санның өзін алып тастаған кезде 0 қалады.
x^{2}+12x=13
-13 мәнінен 0 мәнін алу.
x^{2}+12x+6^{2}=13+6^{2}
x бос мүшесінің коэффициенті болып табылатын 12 санын 2 мәніне бөлсеңіз, 6 саны шығады. Содан соң, теңдеудің екі жағына 6 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+12x+36=13+36
6 санының квадратын шығарыңыз.
x^{2}+12x+36=49
13 санын 36 санына қосу.
\left(x+6\right)^{2}=49
x^{2}+12x+36 көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+6\right)^{2}}=\sqrt{49}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+6=7 x+6=-7
Қысқартыңыз.
x=1 x=-13
Теңдеудің екі жағынан 6 санын алып тастаңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}