Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз (complex solution)
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}x^{2}+5=x^{2}
x айнымалы мәні 0 мәніне тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да x^{2} мәніне көбейтіңіз.
x^{4}+5=x^{2}
Бір негіздің дәрежелерін көбейту үшін, олардың дәреже көрсеткіштерін қосыңыз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін қосыңыз.
x^{4}+5-x^{2}=0
Екі жағынан да x^{2} мәнін қысқартыңыз.
t^{2}-t+5=0
x^{2} мәнін t мәніне ауыстырыңыз.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 5}}{2}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 1 мәнін a мәніне, -1 мәнін b мәніне және 5 мәнін c мәніне ауыстырыңыз.
t=\frac{1±\sqrt{-19}}{2}
Есептеңіз.
t=\frac{1+\sqrt{19}i}{2} t=\frac{-\sqrt{19}i+1}{2}
± мәні плюс, ал ± мәні минус болған кездегі "t=\frac{1±\sqrt{-19}}{2}" теңдеуін шешіңіз.
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}} x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}
x=t^{2} болғандықтан, шешімдер әр t мәні үшін x=±\sqrt{t} мәнін есептеу арқылы алынады.
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0
x айнымалы мәні 0 мәніне тең болуы мүмкін емес.