Есептеу
3\sqrt{3}\approx 5.196152423
Ортақ пайдалану
Алмасу буферіне көшірілген
14\sqrt{3}-\sqrt{300}+\sqrt{108}-21\sqrt{3^{-1}}
588=14^{2}\times 3 мәнін көбейткіштерге жіктеңіз. \sqrt{14^{2}\times 3} көбейтіндісінің квадрат түбірін \sqrt{14^{2}}\sqrt{3} квадрат түбірлерінің көбейтіндісі ретінде қайта жазыңыз. 14^{2} санының квадраттық түбірін шығарыңыз.
14\sqrt{3}-10\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
300=10^{2}\times 3 мәнін көбейткіштерге жіктеңіз. \sqrt{10^{2}\times 3} көбейтіндісінің квадрат түбірін \sqrt{10^{2}}\sqrt{3} квадрат түбірлерінің көбейтіндісі ретінде қайта жазыңыз. 10^{2} санының квадраттық түбірін шығарыңыз.
4\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
14\sqrt{3} және -10\sqrt{3} мәндерін қоссаңыз, 4\sqrt{3} мәні шығады.
4\sqrt{3}+6\sqrt{3}-21\sqrt{3^{-1}}
108=6^{2}\times 3 мәнін көбейткіштерге жіктеңіз. \sqrt{6^{2}\times 3} көбейтіндісінің квадрат түбірін \sqrt{6^{2}}\sqrt{3} квадрат түбірлерінің көбейтіндісі ретінде қайта жазыңыз. 6^{2} санының квадраттық түбірін шығарыңыз.
10\sqrt{3}-21\sqrt{3^{-1}}
4\sqrt{3} және 6\sqrt{3} мәндерін қоссаңыз, 10\sqrt{3} мәні шығады.
10\sqrt{3}-21\sqrt{\frac{1}{3}}
-1 дәреже көрсеткішінің 3 мәнін есептеп, \frac{1}{3} мәнін алыңыз.
10\sqrt{3}-21\times \frac{\sqrt{1}}{\sqrt{3}}
\sqrt{\frac{1}{3}} бөлуінің квадрат түбірін \frac{\sqrt{1}}{\sqrt{3}} квадрат түбірлерінің бөлуі ретінде қайта жазыңыз.
10\sqrt{3}-21\times \frac{1}{\sqrt{3}}
1 квадраттық түбірін есептеп, 1 мәнін шығарыңыз.
10\sqrt{3}-21\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Алым мен бөлімді \sqrt{3} санына көбейту арқылы \frac{1}{\sqrt{3}} бөлімінің иррационалдығынан құтылыңыз.
10\sqrt{3}-21\times \frac{\sqrt{3}}{3}
\sqrt{3} квадраты 3 болып табылады.
10\sqrt{3}-7\sqrt{3}
21 және 3 ішіндегі ең үлкен 3 бөлгішті қысқартыңыз.
3\sqrt{3}
10\sqrt{3} және -7\sqrt{3} мәндерін қоссаңыз, 3\sqrt{3} мәні шығады.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}