I мәнін табыңыз (complex solution)
\left\{\begin{matrix}I=-\frac{2000\left(9r^{2}+18r-2\right)}{\left(R\left(r+1\right)\right)^{2}}\text{, }&r\neq -1\text{ and }R\neq 0\\I\in \mathrm{C}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }R=0\end{matrix}\right.
I мәнін табыңыз
\left\{\begin{matrix}I=-\frac{2000\left(9r^{2}+18r-2\right)}{\left(R\left(r+1\right)\right)^{2}}\text{, }&r\neq -1\text{ and }R\neq 0\\I\in \mathrm{R}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }R=0\end{matrix}\right.
R мәнін табыңыз (complex solution)
\left\{\begin{matrix}R=-\frac{20iI^{-\frac{1}{2}}\sqrt{45r^{2}+90r-10}}{r+1}\text{; }R=\frac{20iI^{-\frac{1}{2}}\sqrt{45r^{2}+90r-10}}{r+1}\text{, }&r\neq -1\text{ and }I\neq 0\\R\in \mathrm{C}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }I=0\end{matrix}\right.
R мәнін табыңыз
\left\{\begin{matrix}R=\frac{20\sqrt{-\frac{5\left(9r^{2}+18r-2\right)}{I}}}{|r+1|}\text{; }R=-\frac{20\sqrt{-\frac{5\left(9r^{2}+18r-2\right)}{I}}}{|r+1|}\text{, }&\left(I<0\text{ or }r\leq \frac{\sqrt{11}}{3}-1\right)\text{ and }\left(I<0\text{ or }r\geq -\frac{\sqrt{11}}{3}-1\right)\text{ and }r\neq -1\text{ and }\left(I>0\text{ or }r\geq \frac{\sqrt{11}}{3}-1\text{ or }r\leq -\frac{\sqrt{11}}{3}-1\right)\text{ and }I\neq 0\\R\in \mathrm{R}\text{, }&\left(r=-\frac{\sqrt{11}}{3}-1\text{ or }r=\frac{\sqrt{11}}{3}-1\right)\text{ and }I=0\end{matrix}\right.
Ортақ пайдалану
Алмасу буферіне көшірілген
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Теңдеудің екі жағын да \left(r+1\right)^{2} мәніне көбейтіңіз.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
R^{2} шығару үшін, R және R сандарын көбейтіңіз.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
\left(r+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
IR^{2} мәнін r^{2}+2r+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
\left(r+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
r^{2}+2r+1 мәнін -18000 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
4000 мәнін алу үшін, 22000 мәнінен 18000 мәнін алып тастаңыз.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
I қамтылған барлық бос мүшелерді біріктіріңіз.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Теңдеу стандартты формулаға келтірілді.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Екі жағын да R^{2}r^{2}+2rR^{2}+R^{2} санына бөліңіз.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2} санына бөлген кезде R^{2}r^{2}+2rR^{2}+R^{2} санына көбейту әрекетінің күшін жояды.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
4000-36000r-18000r^{2} санын R^{2}r^{2}+2rR^{2}+R^{2} санына бөліңіз.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Теңдеудің екі жағын да \left(r+1\right)^{2} мәніне көбейтіңіз.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
R^{2} шығару үшін, R және R сандарын көбейтіңіз.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
\left(r+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
IR^{2} мәнін r^{2}+2r+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
\left(r+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
r^{2}+2r+1 мәнін -18000 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
4000 мәнін алу үшін, 22000 мәнінен 18000 мәнін алып тастаңыз.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
I қамтылған барлық бос мүшелерді біріктіріңіз.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
Теңдеу стандартты формулаға келтірілді.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Екі жағын да R^{2}r^{2}+2rR^{2}+R^{2} санына бөліңіз.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
R^{2}r^{2}+2rR^{2}+R^{2} санына бөлген кезде R^{2}r^{2}+2rR^{2}+R^{2} санына көбейту әрекетінің күшін жояды.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
4000-18000r^{2}-36000r санын R^{2}r^{2}+2rR^{2}+R^{2} санына бөліңіз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}