x, y мәнін табыңыз
x=5
y=1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x-y=4,x+3y=8
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x-y=4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=y+4
Теңдеудің екі жағына да y санын қосыңыз.
y+4+3y=8
Басқа теңдеуде y+4 мәнін x мәнімен ауыстырыңыз, x+3y=8.
4y+4=8
y санын 3y санына қосу.
4y=4
Теңдеудің екі жағынан 4 санын алып тастаңыз.
y=1
Екі жағын да 4 санына бөліңіз.
x=1+4
x=y+4 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=5
4 санын 1 санына қосу.
x=5,y=1
Жүйедегі ақаулар енді шешілді.
x-y=4,x+3y=8
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&-1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}1&-1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&-1\\1&3\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{1}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 4+\frac{1}{4}\times 8\\-\frac{1}{4}\times 4+\frac{1}{4}\times 8\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=5,y=1
x және y матрица элементтерін шығарыңыз.
x-y=4,x+3y=8
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x-x-y-3y=4-8
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы x+3y=8 мәнін x-y=4 мәнінен алып тастаңыз.
-y-3y=4-8
x санын -x санына қосу. x және -x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-4y=4-8
-y санын -3y санына қосу.
-4y=-4
4 санын -8 санына қосу.
y=1
Екі жағын да -4 санына бөліңіз.
x+3=8
x+3y=8 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=5
Теңдеудің екі жағынан 3 санын алып тастаңыз.
x=5,y=1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}